首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P 相似文献   

2.
In this study we analyzed the role of vascular NAD(P)H oxidase in the generation of O(2)(-) and the endothelial impairment of NO signal transduction pathway in hypertension. In aortic rings of 15-month-old stroke-prone spontaneously hypertensive rats (SHR15) we found a 10-fold increased expression of NAD(P)H oxidase subunit gp91phox mRNA associated with a 3-fold increased production of O(2)(-) compared to age-matched Wistar rats (WIS15). Vasorelaxation studies in aortas of SHR15 showed a strongly diminished response to acetylcholine, NO-donor S-nitroso-N-acetyl-d,l-penicillamine, and organic nitrate glyceryl trinitrate compared to WIS15. Soluble guanylate cyclase (sGC) activity and sGC beta(1)-subunit protein expression was downregulated in aortas and lungs of SHR15. These data suggest an upregulation of vascular NAD(P)H oxidase and an impairment of the NO signal transduction pathway in hypertension.  相似文献   

3.
Macula densa (MD) cells of the juxtaglomerular apparatus (JGA) synthesize type 1 nitric oxide synthase (NOS1) and type 2 cyclooxygenase (COX-2). Both nitric oxide (NO) and prostaglandins have been considered to mediate or modulate the control of renin secretion. Reactive oxygen species (ROS) produced locally by NADPH oxidase may influence NO bioavailability. We have tested the hypothesis that in hypertension elevated ROS levels may modify the expression of NOS1 and COX-2 in the JGA, thereby interacting with juxtaglomerular signaling. To this end, spontaneously hypertensive rats (SHR) and Wistar-Kyoto control rats (WKY) received the specific NADPH oxidase inhibitor, apocynin, during 3 wk. Renal functional and histochemical parameters, plasma renin activity (PRA), and as a measure of ROS activity, urinary isoprostane excretion (IP) were evaluated. Compared with WKY, IP levels in untreated SHR were 2.2-fold increased, and NOS1 immunoreactiviy (IR) of JGA 1.5-fold increased, whereas COX-2 IR was reduced to 35%, renin IR to 51%, and PRA to 7%. Apocynin treatment reduced IP levels in SHR to 52%, NOS1 IR to 69%, and renin IR to 62% of untreated SHR, whereas renin mRNA, COX-2 IR, glomerular filtration rate, PRA, and systolic blood pressure remained unchanged. WKY revealed no changes under apocynin treatment. These data show that NADPH oxidase is an important contributor to elevated levels of ROS in hypertension. Upregulation of MD NOS1 in SHR may have the potential of blunting the functional impact of ROS at the level of bioavailable NO. Downregulated COX-2 and renin levels in SHR are apparently unrelated to oxidative stress, since apocynin treatment had no effect on these parameters.  相似文献   

4.
Vascular aging is characterized by increased oxidative stress, impaired nitric oxide (NO) bioavailability and enhanced apoptotic cell death. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower production of reactive oxygen species (ROS) and/or superior resistance to oxidative stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse (Peromyscus leucopus) and the house mouse (Mus musculus), that show a more than twofold difference in maximum lifespan potential (MLSP = 8 and 3.5 years, respectively). We compared interspecies differences in endothelial superoxide (O2-) and hydrogen peroxide (H2O2) production, NAD(P)H oxidase activity, mitochondrial ROS generation, expression of pro- and antioxidant enzymes, NO production, and resistance to oxidative stress-induced apoptosis. In aortas of P. leucopus, NAD(P)H oxidase expression and activity, endothelial and H2O2 production, and ROS generation by mitochondria were less than in mouse vessels. In P. leucopus, there was a more abundant expression of catalase, glutathione peroxidase 1 and hemeoxygenase-1, whereas expression of Cu/Zn-SOD and Mn-SOD was similar in both species. NO production and endothelial nitric oxide synthase expression was greater in P. leucopus. In mouse aortas, treatment with oxidized low-density lipoprotein (oxLDL) elicited substantial oxidative stress, endothelial dysfunction and endothelial apoptosis (assessed by TUNEL assay, DNA fragmentation and caspase 3 activity assays). According to our prediction, vessels of P. leucopus were more resistant to the proapoptotic effects of oxidative stressors (oxLDL and H2O2). Primary fibroblasts from P. leucopus also exhibited less H2O2-induced DNA damage (comet assay) than mouse cells. Thus, increased lifespan potential in P. leucopus is associated with a decreased cellular ROS generation and increased oxidative stress resistance, which accords with the prediction of the oxidative stress hypothesis of aging.  相似文献   

5.
Both NADPH oxidase-derived reactive oxygen species (ROS) and asymmetric dimethylarginine (ADMA) are increased in hypertension. Apocynin, an NADPH oxidase inhibitor, could inhibit ROS, thus we tested whether apocynin can block NADPH oxidase and prevent increases of ADMA and blood pressure (BP) in spontaneously hypertensive rats (SHRs). SHRs and Wistar Kyoto (WKY) rats, aged 4 weeks, were assigned to four groups: untreated SHRs and WKY rats, SHRs and WKY rats that received 2.5 mM apocynin for 8 weeks. BP was significantly higher in SHRs compared to WKY rats, which was attenuated by apocynin. Apocynin prevented p47phox translocation in SHR kidneys, but not the increase of superoxide and H(2)O(2). Additionally, apocynin did not protect SHRs against increased ADMA. Apocynin blocks NADPH oxidase to attenuate hypertension, but has little effect on the ADMA/nitric oxide (NO) pathway in young SHRs. The reduction of ROS and the preservation of NO simultaneously might be a better approach to restoring ROS-NO balance to prevent hypertension.  相似文献   

6.
Recently, it has been shown that the exogenous addition of hydrogen peroxide (H(2)O(2)) increases endothelial nitric oxide (NO(.)) production. The current study is designed to determine whether endogenous levels of H(2)O(2) are ever sufficient to stimulate NO(.) production in intact endothelial cells. NO(.) production was detected by a NO(.)-specific microelectrode or by an electron spin resonance spectroscopy using Fe(2+)-(DETC)(2) as a NO(.)-specific spin trap. The addition of H(2)O(2) to bovine aortic endothelial cells caused a potent and dose-dependent increase in NO(.) release. Incubation with angiotensin II (10(-7) mol) elevated intracellular H(2)O(2) levels, which were attenuated with PEG-catalase. Angiotensin II increased NO(.) production by 2-fold, and this was prevented by Losartan and by PEG-catalase, suggesting a critical role of AT1 receptor and H(2)O(2) in this response(.) In contrast, NO(.) production evoked by either bradykinin or calcium ionophore was unaffected by PEG-catalase. As in bovine aortic endothelial cells, angiotensin II doubled NO(.) production in aortic endothelial cells from C57BL/6 mice but had no effect on NO(.) production in endothelial cells from p47(phox-/-) mice. In contrast, stimulated NO(.) production to a similar extent in endothelial cells from wild-type and p47(phox-/-) mice. In summary, the present study provides direct evidence that endogenous H(2)O(2), derived from the NAD(P)H oxidase, mediates endothelial NO(.) production in response to angiotensin II. Under disease conditions associated with elevated levels of angiotensin II, this response may represent a compensatory mechanism. Because angiotensin II also stimulates O(2)() production from the NAD(P)H oxidase, the H(2)O(2) stimulation of NO(.) may facilitate peroxynitrite formation in response to this octapeptide.  相似文献   

7.
There is growing evidence that endothelial dysfunction, which is often defined as the decreased endothelial-derived nitric oxide (NO) bioavailability, is a crucial factor leading to vascular disease states such as hypertension, diabetes, atherosclerosis, heart failure and cigarette smoking. This is due to the fact that the lack of NO in endothelium-dependent vascular disorders contributes to impaired vascular relaxation, platelet aggregation, increased vascular smooth muscle proliferation, and enhanced leukocyte adhesion to the endothelium. During the last several years, it has become clear that reduction of NO bioavailability in the endothelium-impaired function disorders is associated with an increase in endothelial production of superoxide (O(2)(*-)). Because O(2)(*-) rapidly scavenges NO within the endothelium, a reduction of bioactive NO might occur despite an increased NO generation. Among many enzymatic systems that are capable of producing O(2)(*-), NAD(P)H oxidase and uncoupled endothelial NO synthase (eNOS) apparently are the main sources of O(2)(*-) in the endothelial cells. It seems that O(2)(*-) generated by NAD(P)H oxidase may trigger eNOS uncoupling and contribute to the endothelial balance between NO and O(2)(*-). That is maintained at diverse levels.  相似文献   

8.
It has been reported that nonmitochondrial NAD(P)H oxidases make an important contribution to intracellular O2-* in vascular tissues and, thereby, the regulation of vascular function. Topological analyses have suggested that a well-known membrane-associated NAD(P)H oxidase may not release O2-* into the cytosol. It is imperative to clarify the source of intracellular O2-* associated with this enzyme and its physiological significance in vascular cells. The present study hypothesized that an NAD(P)H oxidase on the sarcoplasmic reticulum (SR) in coronary artery smooth muscle (CASM) regulates SR ryanodine receptor (RyR) activity by producing O2-* locally. Western blot analysis was used to detect NAD(P)H oxidase subunits in purified SR from CASM. Fluorescent spectrometric analysis demonstrated that incubation of SR with NADH time dependently produced O2-*, which could be substantially blocked by the specific NAD(P)H oxidase inhibitors diphenylene iodonium and apocynin and by SOD or its mimetic tiron. This SR NAD(P)H oxidase activity was also confirmed by HPLC analysis of conversion of NADH to NAD+. In experiments of lipid bilayer channel reconstitution, addition of NADH to the cis solution significantly increased the activity of RyR/Ca2+ release channels from these SR preparations from CASM, with a maximal increase in channel open probability from 0.0044 +/- 0.0005 to 0.0213 +/- 0.0018; this effect of NADH was markedly blocked in the presence of SOD or tiron or the NAD(P)H oxidase inhibitors diphenylene iodonium, N-vanillylnonanamide, and apocynin. These results suggest that a local NAD(P)H oxidase system on SR from CASM regulates RyR/Ca2+ channel activity and Ca2+ release from SR by producing O2-*.  相似文献   

9.
Oxidative stress because of an excessive production of superoxide anion (O2*-) is associated with hypertension. The present study evaluated the hypothesis that in the rostral ventrolateral medulla (RVLM), where the premotor neurons for the maintenance of vascular vasomotor activity are located, increased O2*- contributes to hypertension in spontaneously hypertensive rats (SHR) by modulating the cardiovascular depressive actions of nitric oxide (NO). Compared with normotensive Wistar-Kyoto (WKY) rats, SHR manifested significantly increased basal O2*- production, along with reduced manganese superoxide dismutase (MnSOD) expression and activity, in the RVLM. The magnitude of hypotension, bradycardia, or suppression of sympathetic neurogenic vasomotor tone elicited by microinjection bilaterally into the RVLM of a membrane-permeable SOD mimetic, Mn(III)-tetrakis-(4-benzoic acid) porphyrin (MnTBAP), was also significantly larger in SHR. Transfection bilaterally into the RVLM of adenoviral vectors encoding endothelial nitric oxide synthase resulted in suppression of arterial pressure, heart rate, and sympathetic neurogenic vasomotor tone in both WKY rats and SHR. Microinjection of MnTBAP into the RVLM of SHR further normalized those cardiovascular parameters to the levels of WKY rats. We conclude that an elevated level of O2*- in the RVLM is associated with hypertension in SHR. More importantly, this elevated O2*- may contribute to hypertension by reducing the NO-promoted cardiovascular depression.  相似文献   

10.
Angiotensin (ANG) II via ANG II type 1 receptors (AT1R) activates renal sodium transporters including Na-K-ATPase and regulates sodium homeostasis and blood pressure. It is reported that at a high concentration, ANG II either inhibits or fails to stimulate Na-K-ATPase. However, the mechanisms for these phenomena are not clear. Here, we identified the signaling molecules involved in regulation of renal proximal tubular Na-K-ATPase at high ANG II concentrations. Proximal tubules from spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were incubated with low concentrations of ANG II (pM), which activated Na-K-ATPase in both the groups; however, the stimulation was more robust in SHR. A high concentration of ANG II (μM) failed to stimulate Na-K-ATPase in WKY rats. However, in SHR ANG II (μM) continued to stimulate Na-K-ATPase, which was sensitive to the AT1R antagonist candesartan. In the presence of N(G)-nitro-l-arginine methyl ester (l-NAME), a nitric oxide (NO) synthase (NOS) inhibitor, ANG II (μM) caused stimulation of Na-K-ATPase in proximal tubules of WKY rats while having no further stimulatory effect in SHR. ANG II (μM), via AT1R, increased proximal tubular NO levels in WKY rats but not in SHR. In SHR, NOS was uncoupled as incubation of proximal tubules with ANG II and l-arginine, a NOS substrate, caused superoxide generation only in SHR and not in WKY rats. The superoxide production in SHR was sensitive to l-NAME. There was exaggerated proximal tubular AT1R-G protein coupling and NAD(P)H oxidase activation in response to ANG II (μM) in proximal tubules of SHR compared with WKY rats. In SHR, inhibition of NADPH oxidase restored NOS coupling and ANG II-induced NO accumulation. In conclusion, at a high concentration ANG II (μM) activates renal NO signaling, which prevents stimulation of Na-K-ATPase in WKY rats. However, in SHR ANG II (μM) overstimulates NADPH oxidase, which impairs the NO system and leads to continued Na-K-ATPase activation.  相似文献   

11.
Endogenously produced reactive oxygen species are important for intracellular signaling mechanisms leading to vascular smooth muscle cell (VSMC) growth. It is therefore critical to define the potential enzymatic sources of ROS and their regulation by agonists in VSMCs. Previous studies have investigated O2*- production using lucigenin-enhanced chemiluminescence. However, lucigenin has been recently criticized for its ability to redox cycle and its propensity to measure cellular reductase activity independent from O2*-. To perform a definitive characterization of VSMC oxidase activity, we used electron spin resonance trapping of O2*- with DEPMPO. We confirmed that the main source of O2*- from VSMC membranes is an NAD(P)H oxidase and that the O2*- formation from mitochondria, xanthine oxidase, arachidonate-derived enzymes, and nitric oxide synthases in VSMC membranes was minor. The VSMC NAD(P)H oxidase(s) are able to produce more O2*- when NADPH is used as the substrate compared to NADH (the maximal NADPH signal is 2.4- +/- 0.4-fold higher than the NADH signal). The two substrates had similar EC(50)'s ( approximately 10-50 microM). Stimulation with angiotensin II and platelet-derived growth factor also predominantly increased the NADPH-driven signal (101 +/- 8% and 83 +/- 1% increase above control, respectively), with less of an effect on NADH-dependent O2*- (17 +/- 3% and 36 +/- 5% increase, respectively). Moreover, incubation of the cells with diphenylene iodonium inhibited predominantly NADPH-stimulated O2*-. In conclusion, electron spin resonance characterization of VSMC oxidase activity supports a major role for an NAD(P)H oxidase in O2*- production in VSMCs, and provides new evidence concerning the substrate dependency and agonist-stimulated activity of this key enzyme.  相似文献   

12.
Although NAD(P)H oxidase-derived superoxide (O(2)(-)) is increased during the development of angiotensin II (ANG II)-dependent hypertension, vascular regulation at the protein level has not been reported. We have shown that four major components of NAD(P)H oxidase are located primarily in the vascular adventitia as a primary source of vascular O(2)(-). Here we compare vascular levels of O(2)(-) and NAD(P)H oxidase in normotensive and ANG II-infused hypertensive mice and show that, after 7 days of ANG II infusion (750 microg. kg(-1). day(-1) ip) in C57B1/6 mice, systolic blood pressure was increased compared with that after sham infusion, concomitant with increased O(2)(-) in the thoracic aorta as measured using lucigenin (25 microM)-enhanced chemiluminescence. Both p67(phox) and gp91(phox) were detectable by Western blotting in aortic homogenates, and we observed increased protein levels of NAD(P)H oxidase subunits. These ANG II-induced increases were normalized by simultaneous treatment with the AT(1) receptor antagonist losartan. Moreover, the primary location of these subunits was the adventitia as detected immunohistochemically. Our results suggest that ANG II-induced increases in O(2)(-) are due to increased adventitial NAD(P)H oxidase activity, brought about by the heightened expression and interaction of its components.  相似文献   

13.
Methylglyoxal (MG) is a metabolite of glucose. Our previous study demonstrated an elevated MG level with an increased oxidative stress in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats. Whether MG causes the generation of nitric oxide (NO) and superoxide anion (O2*-), leading to peroxynitrite (ONOO-) formation in VSMCs, was investigated in the present study. Cultured rat thoracic aortic SMCs (A-10) were treated with MG or other different agents. Oxidized DCF, reflecting H2O2 and ONOO- production, was significantly increased in a concentration- and time-dependent manner after the treatment of SMCs with MG (3-300 microM) for 45 min-18 h (n = 12). MG-increased oxidized DCF was effectively blocked by reduced glutathione or N-acetyl-l-cysteine, as well as L-NAME (p < 0.05, n = 12). Both O2*- scavenger SOD and NAD(P)H oxidase inhibitor DPI significantly decreased MG-induced oxidized DCF formation. MG significantly and concentration-dependently increased NO and O2*- generation in A-10 cells, which was significantly inhibited by L-NAME and SOD or DPI, respectively. In conclusion, MG induces significant generation of NO and O2*- in rat VSMCs, which in turn causes ONOO- formation. An elevated MG level and the consequential ROS/RNS generation would alter cellular signaling pathways, contributing to the development of different insulin resistance states such as diabetes or hypertension.  相似文献   

14.
Little is known concerning the effect of oxidative stress on the expression of antioxidative enzymes in the decompensated cardiac hypertrophy of spontaneously hypertensive rats (SHR), considered as a model of dilative cardiomyopathy in man. Superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) were characterized in isolated perfused hearts of 18 month old SHR and the age-matched normotensive control Wistar-Kyoto (WKY) rats, before and after 30 min infusion of 25 microM H(2)O(2). After infusion of H(2)O(2), aortic flow decreased in WKY from 26.2 +/- 2.2 to 16.0 +/- 0.8 ml/min (p <.05) but not in SHR (18.2 +/- 1.9 vs. 20.7 +/- 2.2 ml/min). This protection was related to the higher myocardial activities of GPx, MnSOD and CuZnSOD in SHR, compared with those of the WKY group. Although total SOD activity in the SHR fell after H(2)O(2) exposure (to 1.81 +/- 0.13 from 3.56 +/- 0.49 U/mg of protein), catalase activity increased (to 2.46 +/- 0.34 from 1.56 +/- 0.29 k min(-1)mg(-1)protein), compared with the pre-infusion period (p <.05 in each case). In additional studies, hearts were subjected to 30 min of global ischemia followed by 30 min of reperfusion. The results obtained in ischemic/reperfused hearts show the same changes in enzyme activities measured as it was observed in H(2)O(2) perfused hearts, indicating that oxidative stress is independent of the way it was induced. The higher catalase activity derived from elevated mRNA synthesis. The antioxidative system in dilative cardiomyopathic hearts of SHR is induced, probably due to episodes of oxidative stress, during the process of decompensation. This conditioning of the antioxidative potential may help overcome acute stress situations caused by reactive oxygen species in the failing myocardium.  相似文献   

15.
Insulin stimulates production of NO in vascular endothelium via activation of phosphatidylinositol (PI) 3-kinase, Akt, and endothelial NO synthase. We hypothesized that insulin resistance may cause imbalance between endothelial vasodilators and vasoconstrictors (e.g., NO and ET-1), leading to hypertension. Twelve-week-old male spontaneously hypertensive rats (SHR) were hypertensive and insulin resistant compared with control Wistar-Kyoto (WKY) rats (systolic blood pressure 202 +/- 11 vs. 132 +/- 10 mmHg; fasting plasma insulin 5 +/- 1 vs. 0.9 +/- 0.1 ng/ml; P < 0.001). In WKY rats, insulin stimulated dose-dependent relaxation of mesenteric arteries precontracted with norepinephrine (NE) ex vivo. This depended on intact endothelium and was blocked by genistein, wortmannin, or N(omega)-nitro-l-arginine methyl ester (inhibitors of tyrosine kinase, PI3-kinase, and NO synthases, respectively). Vasodilation in response to insulin (but not ACh) was impaired by 20% in SHR (vs. WKY, P < 0.005). Preincubation of arteries with insulin significantly reduced the contractile effect of NE by 20% in WKY but not SHR rats. In SHR, the effect of insulin to reduce NE-mediated vasoconstriction became evident when insulin pretreatment was accompanied by ET-1 receptor blockade (BQ-123, BQ-788). Similar results were observed during treatment with the MEK inhibitor PD-98059. In addition, insulin-stimulated secretion of ET-1 from primary endothelial cells was significantly reduced by pretreatment of cells with PD-98059 (but not wortmannin). We conclude that insulin resistance in SHR is accompanied by endothelial dysfunction in mesenteric vessels with impaired PI3-kinase-dependent NO production and enhanced MAPK-dependent ET-1 secretion. These results may reflect pathophysiology in other vascular beds that directly contribute to elevated peripheral vascular resistance and hypertension.  相似文献   

16.
Protein levels and polymorphisms of p22(phox) have been suggested to modulate vascular NAD(P)H oxidase activity and vascular production of reactive oxygen species (ROS). We sought to determine whether increasing p22(phox) expression would alter vascular ROS production and hemodynamics by targeting p22(phox) expression to smooth muscle in transgenic (Tg) mice. Aortas of Tg(p22smc) mice had increased p22(phox) and Nox1 protein levels and produced more superoxide and H(2)O(2). Surprisingly, endothelium-dependent relaxation and blood pressure in Tg(p22smc) mice were normal. Aortas of Tg(p22smc) mice produced twofold more nitric oxide (NO) at baseline and sevenfold more NO in response to calcium ionophore as detected by electron spin resonance. Western blot analysis revealed a twofold increase in endothelial NO synthase (eNOS) protein expression in Tg(p22smc) mice. Both eNOS expression and NO production were normalized by infusion of the glutathione peroxidase mimetic ebselen or by crossing Tg(p22smc) mice with mice overexpressing catalase. We have previously found that NO stimulates extracellular superoxide dismutase (ecSOD) expression in vascular smooth muscle. In keeping with this, aortic segments from Tg(p22smc) mice expressed twofold more ecSOD, and chronic treatment with the NOS inhibitor N(G)-nitro-L-arginine methyl ester normalized this, suggesting that NO regulates ecSOD protein expression in vivo. These data indicate that chronic oxidative stress caused by excessive H(2)O(2) production evokes a compensatory response involving increased eNOS expression and NO production. NO in turn increases ecSOD protein expression and counterbalances increased ROS production leading to the maintenance of normal vascular function and hemodynamics.  相似文献   

17.
Among their pleiotropic effects, statins exert antioxidant and anti-inflammatory properties. The aim of this study was to evaluate in normotensive (WKY) and in spontaneously hypertensive rats (SHR) the effect of rosuvastatin (ROSU) treatment on (1) plasma inflammation markers and endogenous NO synthase inhibitor (ADMA) levels, (2) reactive oxygen species (ROS) generated by circulating leukocytes and (3) vascular oxidative stress and tissue inflammation markers. Plasma cytokines were higher in SHR than in WKY, except for IL-4, which was lower in SHR than in WKY. SHR monocytes exhibited higher production of ROS than did WKY monocytes. In the experimental conditions, ROSU did not modify plasma cholesterol levels in SHR but attenuated the increase in systolic blood pressure. In SHR only, ROSU lessened pro-inflammatory cytokines and ADMA levels, increased IL-4 and reduced ROS production in circulating monocytes. These results demonstrate the beneficial effects of ROSU in SHR, independently of any lowering of cholesterol levels.  相似文献   

18.
Among their pleiotropic effects, statins exert antioxidant and anti-inflammatory properties. The aim of this study was to evaluate in normotensive (WKY) and in spontaneously hypertensive rats (SHR) the effect of rosuvastatin (ROSU) treatment on (1) plasma inflammation markers and endogenous NO synthase inhibitor (ADMA) levels, (2) reactive oxygen species (ROS) generated by circulating leukocytes and (3) vascular oxidative stress and tissue inflammation markers. Plasma cytokines were higher in SHR than in WKY, except for IL-4, which was lower in SHR than in WKY. SHR monocytes exhibited higher production of ROS than did WKY monocytes. In the experimental conditions, ROSU did not modify plasma cholesterol levels in SHR but attenuated the increase in systolic blood pressure. In SHR only, ROSU lessened pro-inflammatory cytokines and ADMA levels, increased IL-4 and reduced ROS production in circulating monocytes. These results demonstrate the beneficial effects of ROSU in SHR, independently of any lowering of cholesterol levels.  相似文献   

19.
The study investigated whether the amelioration of endothelial dysfunction by candesartan (2 mg.kg-1.day-1; 10 wk) in spontaneously hypertensive rats (SHR) was associated with modification of hepatic redox system. Systolic arterial pressure (SAP) was higher (P < 0.05) in SHR than in Wistar-Kyoto rats (WKY) and was reduced (P < 0.05) by candesartan in both strains. Acetylcholine (ACh) relaxations were smaller (P < 0.05) and contractions induced by ACh + NG-nitro-l-arginine methyl ester (l-NAME) were greater (P < 0.05) in SHR than in WKY. Treatment with candesartan enhanced (P < 0.05) ACh relaxations in SHR and reduced (P < 0.05) ACh + l-NAME contractions in both strains. Expression of aortic endothelial nitric oxide synthase (eNOS) mRNA was similar in WKY and SHR, and candesartan increased (P < 0.05) it in both strains. Aortic mRNA expression of the subunit p22phox of NAD(P)H oxidase was higher (P < 0.05) in SHR than in WKY. Treatment with candesartan reduced (P < 0.05) p22phox expression only in SHR. Malonyl dialdehyde (MDA) levels were higher (P < 0.05), and the ratio reduced/oxidized glutathione (GSH/GSSG) as well as glutathione peroxidase activity (GPx) were lower (P < 0.05) in liver homogenates from SHR than from WKY. Candesartan reduced (P < 0.05) MDA and increased (P < 0.05) GSH/GSSG ratio without affecting GPx. Vessel, lumen, and media areas were bigger (P < 0.05) in SHR than in WKY. Candesartan treatment reduced (P < 0.05) media area in SHR without affecting vessel or lumen area. The results suggest that hypertension is not only associated with elevation of vascular superoxide anions but with alterations of the hepatic redox system, where ANG II is clearly involved. The results further support the key role of ANG II via AT1 receptors for the functional and structural vascular alterations produced by hypertension.  相似文献   

20.
We have earlier shown that aortic vascular smooth muscle cells (VSMC) from 12-week-old spontaneously hypertensive rats (SHR) exhibited enhanced production of superoxide anion (O(2)(-)) compared with Wistar-Kyoto (WKY) rats. This production was attenuated to control levels by losartan, an angiotensin II (Ang II) AT(1)-receptor antagonist, suggesting that the AT(1) receptor is implicated in enhanced oxidative stress in SHR. Since AT(1) receptor activation signals via adenylyl cyclase inhibition and decreases cAMP levels, it is possible that AT(1) receptor-mediated decreased levels of cAMP contribute to the enhanced production of O(2)(-) in SHR. The present study was undertaken to investigate this possibility. The basal adenylyl cyclase activity as well as isoproterenol and forskolin-mediated stimulation of adenylyl cyclase was significantly attenuated in VSMC from 12-week-old SHR compared with those from WKY rats, whereas Ang II-mediated inhibition of adenylyl cyclase was significantly enhanced by about 70%, resulting in decreased levels of cAMP in SHR. NADPH oxidase activity and the levels of O2- were significantly higher (about 120% and 200%, respectively) in VSMC from SHR than from WKY rats. In addition, the levels of p47(phox) and Nox4 proteins, subunits of NADPH oxidase, were significantly augmented about 35%-40% in VSMC from SHR compared with those from WKY rats. Treatment of VSMC from SHR with 8Br-cAMP, as well as with cAMP-elevating agents such as isoproterenol and forskolin, restored to control WKY levels the enhanced activity of NADPH oxidase and the enhanced levels of O(2)(-), p47(phox), and Nox4. Furthermore, in the VSMC A10 cell line, 8Br-cAMP also restored the Ang II-evoked enhanced production of O(2)(-), NADPH oxidase activity, and enhanced levels of p47(phox) and Nox4 proteins to control levels. These data suggest that decreased levels of cAMP in SHR may contribute to the enhanced oxidative stress in SHR and that increasing the levels of cAMP may have a protective effect in reducing oxidative stress and thereby improve vascular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号