首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The assembly of gap junctions (GJs) is a process coordinated by growth factors, kinases, and other signaling molecules. GJ assembly can be enhanced via the elevation of cAMP and subsequent stimulation of connexon trafficking to the plasma membrane. To study the positive regulation of GJ assembly, fibroblasts derived from connexin (Cx)43 knockout (KO) and wild-type (WT) mice were transfected with WT Cx43 (WTCx43) or mutant Cx43. GJ assembly between untransfected WT fibroblasts or stably transfected WTCx43/KO fibroblasts was increased two- to fivefold by 8Br-cAMP, and this increase could be blocked by inhibition of cAMP-dependent protein kinase (PKA) or truncation of the Cx43 COOH terminus (CT). Although serine 364 (S364) of the Cx43 CT was determined to be a major site of phosphorylation, the molar ratio of Cx43 phosphorylation was not increased by 8Br-cAMP. Importantly, GJ assembly between either S364ECx43/KO or S364ECx43/WT fibroblasts was stimulated by 8Br-cAMP, but that between S364ACx43/KO or S364PCx43/KO fibroblasts was not stimulated, indicating that phosphorylation or a negative charge at S364 is required for enhancement of GJ assembly by cAMP. Furthermore, GJ assembly between S364ACx43/WT fibroblasts could be stimulated by 8Br-cAMP, but could not be between S364PCx43/WT fibroblasts. Thus, S364PCx43 interferes with enhanced GJ assembly when coexpressed with WTCx43.  相似文献   

2.
Interstitial cells of Cajal (ICC) are believed to participate in urethral neurotransmission and it was proposed that direct coupling of ICC and smooth muscle cells (SMC) through gap junctions (GJ) is involved, although this still remains unclear. Hence, we investigated the distribution of different connexins (Cx 43, Cx40, and Cx37) in the sheep and rat urethra, as well as their possible role in neurotransmission. Conventional PCR confirmed that three Cxs are expressed in the urethra. Moreover, both Cx43 and Cx37-immunoreactivity (-ir) were present in SMC, ICC, and the urothelium, although Cx37-ir was significantly weaker and Cx40-ir was limited to the endothelium. While these results indicate that GJ intercellular communication could occur between SMC and ICC, neither the contractile (noradrenergic) nor the relaxant (nitrergic) responses of the rat and sheep urethra to electrical field stimulation were significantly modified by two different GJ inhibitors: 18α-glycyrrhetinic acid and a cocktail of Cx mimetic peptides ((Cx43)Gap 26, (Cx37, Cx43)Gap 27, and (Cx40)Gap 27). By contrast, contractions induced by high K(+) were effectively reduced by both blockers, evidence that they effectively inhibit intercellular communication. These results indicate that GJ are not implicated in urethral neurotransmission, although the question of whether ICC modulate neurotransmission through some other mechanism remains to be determined.  相似文献   

3.
The aim of the present study was to examine the hypothesis that acceleration of gap junction (GJ) closure during ischemia contributes to anti-infarct tolerance afforded by preconditioning (PC). First, the effects of PC on GJ communication during ischemia were assessed. Isolated buffer-perfused rabbit hearts were subjected to 5-min global ischemia with or without PC with two cycles of 5-min ischemia/5-min reperfusion or a GJ blocker (2 mM heptanol), and then the tissue excised from the ischemic region was incubated in anoxic buffer containing lucifer yellow (LY; 2.5 mg/ml), a tracer of GJ permeability, for 20 min at 37 degrees C. PC and heptanol significantly reduced the area to which LY was transported in the ischemic myocardium by 39% and by 54%, respectively. In the second series of experiments, three GJ blockers (heptanol, 18beta-glycyrrhetinic acid, and 2,3-butanedione monoxime) infused after the onset of ischemia reduced infarct size after 30-min ischemia/2-h reperfusion to an extent equivalent to that in the case of PC. In the third series of experiments, Western blotting for connexin43 (Cx43) showed that PC shortened the time to the onset of ischemia-induced Cx43 dephosphorylation but reduced the extent of Cx43 dephosphorylation during a 30-min period of ischemia. Calphostin C, a protein kinase C (PKC) inhibitor, abolished preservation of phosphorylated Cx43 but not the early onset of Cx43 dephosphorylation after ischemia in the preconditioned myocardium. These results suggest that PC-induced reduction of GJ permeability during ischemia, presumably by PKC-mediated Cx43 phosphorylation, contributes to infarct size limitation.  相似文献   

4.
Connexins (Cxs) and gap junction (GJ)‐mediated communication have been linked with the regulation of cell cycle traverse. However, it is not clear whether Cx expression or GJ channel function are the key mediators in this process or at what stage this regulation may occur. We therefore tested the hypothesis that enhanced Cx expression could alter the rate of cell cycle traverse independently of GJ channel function. Sodium butyrate (NaBu) or anti‐arrhythmic peptide (AAP10) were used to enhance Cx expression in HeLa cells stably expressing Cx43 (HeLa‐43) and primary cultures of human fibroblasts (HFF) that predominantly express Cx43. To reduce GJ‐mediated communication, 18‐α‐glycyrrhetinic acid (GA) was used. In HeLa‐43 and HFF cells, NaBu and AAP10 enhanced Cx43 expression and increased channel function, while GA reduced GJ‐mediated communication but did not significantly alter Cx43 expression levels. Timelapse microscopy and flow cytometry of HeLa‐WT (wild‐type, Cx deficient) and HeLa‐43 cells dissected cell cycle traverse and enabled measurements of intra‐mitotic time and determined levels of G1 arrest. Enhanced Cx43 expression increased mitotic durations corresponding with a G1 delay in cell cycle, which was linked to an increase in expression of the cell cycle inhibitor p21waf1/cip1 in both HeLa‐43 and HFF cells. Reductions in Cx43 channel function did not abrogate these responses, indicating that GJ channel function was not a critical factor in reducing cell proliferation in either cell type. We conclude that enhanced Cx43 expression and not GJ‐mediated communication, is involved in regulating cell cycle traverse. J. Cell. Biochem. 110: 772–782, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
This study of the postischemic events in the hamster cheek pouch showed that there is an increase in number of leukocytes adhering to the venular endothelium after reperfusion. It also showed that the stable prostacyclin analogue Iloprost could counteract both the postischemic increase in leukocyte adhesion and the postischemic increase in vascular permeability to macromolecules. The hamsters were anesthetized and the cheek pouch was everted and prepared for intravital microscopy. Temporary ischemia (30 min) was obtained using an expandable cuff placed around the proximal part of the cheek pouch. Fluorescein labelled dextran (FITC-dextran, Mw 150,000) was used as a tracer of macromolecular leakage from the postcapillary venules. Iloprost, given either topically (0.1 nM) or as an intravenous infusion (40 ng/kg/min), reduced the postischemic permeability increase (P less than 0.05) but did not affect the hemodynamics or the permeability response induced by histamine. It is proposed that these effects could be due to inhibition of leukocyte activation by Iloprost, indicating that these cells could play a role in the permeability increase during reperfusion after ischemia.  相似文献   

6.
Dominant mutations in GJA1, the gene encoding the gap junction protein connexin43 (Cx43), cause oculodentodigital dysplasia (ODDD), a syndrome affecting multiple tissues, including the central nervous system (CNS). We investigated the effects of the G60S mutant, which causes a similar, dominant phenotype in mice (Gja1(Jrt/+)). Astrocytes in acute brain slices from Gja1(Jrt/+) mice transfer sulforhodamine-B comparably to that in their wild-type (WT) littermates. Further, astrocytes and cardiomyocytes cultured from Gja1(Jrt/+) mice showed a comparable transfer of lucifer yellow to those from WT mice. In transfected cells, the G60S mutant formed gap junction (GJ) plaques but not functional channels. In co-transfected cells, the G60S mutant co-immunoprecipitated with WT Cx43, but did not diminish GJ coupling as measured by dual patch clamp. Thus, whereas G60S has dominant effects, it did not appreciably reduce GJ coupling.  相似文献   

7.
Accruing evidence indicates that connexin (Cx) channels in the gap junctions (GJ) are involved in neurodegeneration after injury. However, studies using KO animal models endowed apparently contradictory results in relation to the role of coupling in neuroprotection. We analyzed the role of Cx-mediated communication in a focal lesion induced by mechanical trauma of the retina, a model that allows spatial and temporal definition of the lesion with high reproducibility, permitting visualization of the focus, penumbra and adjacent areas. Cx36 and Cx43 exhibited distinct gene expression and protein levels throughout the neurodegeneration progress. Cx36 was observed close to TUNEL-positive nuclei, revealing the presence of this protein surrounding apoptotic cells. The functional role of cell coupling was assessed employing GJ blockers and openers combined with lactate dehydrogenase (LDH) assay, a direct method for evaluating cell death/viability. Carbenoxolone (CBX), a broad-spectrum GJ blocker, reduced LDH release after 4 hours, whereas quinine, a Cx36-channel specific blocker, decreased LDH release as early as 1 hour after lesion. Furthermore, analysis of dying cell distribution confirmed that the use of GJ blockers reduced apoptosis spread. Accordingly, blockade of GJ communication during neurodegeneration with quinine, but not CBX, caused downregulation of initial and effector caspases. To summarize, we observed specific changes in Cx gene expression and protein distribution during the progress of retinal degeneration, indicating the participation of these elements in acute neurodegeneration processes. More importantly, our results revealed that direct control of GJ channels permeability may take part in reliable neuroprotection strategies aimed to rapid, fast treatment of mechanical trauma in the retina.  相似文献   

8.
For in vivo study of the phenomena observed in vitro, PMN (polymorphonuclear leukocyte) extravasation was analysed quantitatively in the microcirculation of the hamster cheek pouch using a video system. Topical application of leukotriene B(4) or N-formyl-methionylleucyl- phenylalanine increased dose dependently the number of PMNs adhering to the venules. Eighty to 90% of the adhering PMNs disappeared from the vascular lumen into the venular wall within 10-12 rain after the adhesion. After PMNs had passed through the endothelial cell layer, they remained in the venular wall for more than 30 min after application of the chemoattractants and appeared in the extravascular space. Thus, the process could be divided into five steps: (1) rolling and (2) adhesion to the endothelium, (3) passage through the endothelial layer (4) remaining in the venular wall, and (5) passage through the basement membrane.  相似文献   

9.
Gap junction (GJ) channels are formed by two hemichannels (connexons), each contributed by the cells taking part in this direct cell-cell communication conduit. Hemichannels that do not interact with their counterparts on neighboring cells feature as a release pathway for small paracrine messengers such as nucleotides, glutamate, and prostaglandins. Connexins are phosphorylated by various kinases, and we compared the effect of various kinase-activating stimuli on GJ channels and hemichannels. Using peptides identical to a short connexin (Cx) amino acid sequence to specifically block hemichannels, we found that protein kinase C, Src, and lysophosphatidic acid (LPA) inhibited GJs and hemichannel-mediated ATP release in Cx43-expressing C6 glioma cells (C6-Cx43). Lipopolysaccharide (LPS) and basic fibroblast growth factor (bFGF) inhibited GJs, but they stimulated ATP release via hemichannels in C6-Cx43. LPS and bFGF inhibited hemichannel-mediated ATP release in HeLa-Cx43 cells, but they stimulated it in HeLa-Cx43 with a truncated carboxy-terminal (CT) domain or in HeLa-Cx26, which has a very short CT. Hemichannel potentiation by LPS was inhibited by blockers of the arachidonic acid metabolism, and arachidonic acid had a potentiating effect like LPS and bFGF. We conclude that GJ channels and hemichannels display similar or oppositely directed responses to modulatory influences, depending on the balance between kinase activity and the activity of the arachidonic acid pathway. Distinctive hemichannel responses to pathological stimulation with LPS or bFGF may serve to optimize the cell response, directed at strictly controlling cellular ATP release, switching from direct GJ communication to indirect paracrine signaling, or maximizing cell-protective strategies.  相似文献   

10.
Follicle-stimulating hormone is the major regulator of growth and development of antral follicles in the ovary. Granulosa cells (GCs) in these follicles are coupled via gap junctions (GJs) consisting of connexin 43 (Cx 43). Because we and others have found that Cx 43 and GJs, respectively, are more abundant in large antral follicles compared with small antral and preantral follicles, we hypothesized that FSH may control Cx 43 gene expression, GJ formation, and intercellular communication. To directly address these points, we chose a rat GC line (GFSHR-17) expressing the FSH receptor and the Cx 43 gene. The functionality of FSH receptors was shown by the effects of porcine FSH, namely cell rounding, reduced cellular proliferation, and stimulation of progesterone production of GFSHR-17 cells, which are effects that were detectable within hours. Treatment with FSH also statistically significantly increased Cx 43 mRNA levels, as shown after 6 to 9 h in Northern blots. These effects were antedated by altered GJ communication, which was observed within seconds. Using a single-cell/whole-cell patch clamp technique, we showed that FSH rapidly and reversibly enhanced electrical cell coupling of GFSHR-17 cells. Increased GJ communication was associated with statistically significantly decreased phosphorylation of Cx 43, which was observed within 10 min after FSH addition, during immunoprecipitation experiments. Our results demonstrate, to our knowledge for the first time, that the gonadotropin FSH acutely and directly stimulates intercellular communication of GFSHR-17 cells through existing GJs. Moreover, FSH also increases levels of Cx 43 mRNA. These changes are associated with reduced proliferation and enhanced differentiation of GFSHR-17 cells. In vivo factors in addition to FSH may be involved in the regulation of GJ/GJ communication between GCs in the follicle, but our results suggest that improved cell-to-cell coupling, enhanced Cx 43 gene expression, and possibly, formation of new GJs are direct consequences of FSH receptor activation and may antedate and/or initiate the pivotal effects of FSH on GCs.  相似文献   

11.
Gap junctions (GJs) are aggregates of channels that provide for direct cytoplasmic connection between cells. Importantly, this connection is thought responsible for cell-to-cell transfer of the cardiac action potential. The GJ channels of ventricular myocytes are composed of connexin43 (Cx43). Interaction of Cx43 with zonula occludens-1 (ZO-1) is localized not only at the GJ plaque, but also to the region surrounding the GJ, the perinexus. Cx43 in the perinexus is not detectable by immunofluorescence, yet localization of Cx43/ZO-1 interaction to this region indicated the presence of Cx43. Therefore, we hypothesized that Cx43 occurs in the perinexus at a lower concentration per unit membrane than in the GJ itself, making it difficult to visualize. To overcome this, the Duolink protein–protein interaction assay was used to detect Cx43. Duolink labeling of cardiomyocytes localized Cx43 to the perinexus. Quantification demonstrated that signal in the perinexus was lower than in the GJ but significantly higher than in nonjunctional regions. Additionally, Duolink of Triton X-100-extracted cultures suggested that perinexal Cx43 is nonjunctional. Importantly, the voltage gated sodium channel Nav1.5, which is responsible for initiation of the action potential, was found to interact with perinexal Cx43 but not with ZO-1. This work provides a detailed characterization of the structure of the perinexus at the GJ edge and indicates that one of its potential functions in the heart may be in facilitating conduction of action potential.  相似文献   

12.
Connexin 43 (Cx43) is a major gap junction (GJ) protein found in many mammalian cell types. The C-terminal (CT) domain of Cx43 has unique characteristics in terms of amino acid (aa) sequence and its length differs from other connexins. This CT domain can be associated with protein partners to regulate GJ assembly and degradation, which results in the direct control of gap junction intercellular communication (GJIC). However, the essential roles of the CT regions involved in these mechanisms have not been fully elucidated. In this study, we aimed to investigate the specific regions of Cx43CT involved in GJ formation and internalization. Wild type Cx43((382aa)) and 10 CT truncated mutants were stably expressed in HeLa cells as GFP or DsRed tagged proteins. First, we found that the deletion of 235-382aa from Cx43 resulted in failure to make GJ and establish GJIC. Second, the Cx43 with 242-382aa CT deletion could form functional GJs and be internalized as annular gap junctions (AGJs). However, the plaques consisting of Cx43 with CT deletions (Δ242-382aa to Δ271-382aa) were longer than the plaques consisting of Cx43 with CT deletions (Δ302-382aa). Third, co-culture experiments of cells expressing wild type Cx43((382)) with cells expressing Cx43CT mutants revealed that the directions of GJ internalization were dependent on the length of the respective CT. Moreover, a specific region, 325-342aa residues of Cx43, played an important role in the direction of GJ internalization. These results showed the important roles of the Cx43 C-terminus in GJ expression and its turnover.  相似文献   

13.
14.
Renal calculus is a global common urological disease that is closely related to crystal adhesion and renal tubular epithelial cell impairment. Gap junctions (GJs) and their components (connexins and Cxs) are involved in various pathophysiology processes, but their roles in renal calculi progression are not well defined. Our previous RNA microarray analysis suggests that GJs are one of the key predicted pathways involved in the renal calcium oxalate (CaOx) crystal rat model. In the current study, we found that the Cx43 and Cx32 expression and the GJ function decreased significantly after stimulation with CaOx or sodium oxalate (NaOx) in NRK-52E, MDCK, and HK-2 cells, and Cx43 expression also decreased in renal tissues in renal CaOx crystal model rats. Inhibition of Cx43 in NRK-52E cells by small interference RNA significantly increased the CD44 and androgen receptor expression, and the adhesion between CaOx crystals and cells, which were consistent with the function of GJ inhibitors. On the other hand, after GJ function and Cx43 expression were increased by allicin, diallyl disulfide, or diallyl trisulfide, the impairment of NRK-52E cells by NaOx or other GJ inhibitors and the adhesion between CaOx crystals and renal cells decreased significantly. Furthermore, allicin also increased Cx43 expression and inhibited crystal deposition in rat kidneys. Taken together, our results provide a basis that GJs and Cx43 may participate in renal CaOx stone progression and that allicin, together with its analogues, could be potential drugs for renal calculus precaution.  相似文献   

15.
Regulation of gap junction (GJ) organization is critical for proper function of excitable tissues such as heart and brain, yet mechanisms that govern the dynamic patterning of GJs remain poorly defined. Here, we show that zonula occludens (ZO)-1 localizes preferentially to the periphery of connexin43 (Cx43) GJ plaques. Blockade of the PDS95/dlg/ZO-1 (PDZ)-mediated interaction between ZO-1 and Cx43, by genetic tagging of Cx43 or by a membrane-permeable peptide inhibitor that contains the Cx43 PDZ-binding domain, led to a reduction of peripherally associated ZO-1 accompanied by a significant increase in plaque size. Biochemical data indicate that the size increase was due to unregulated accumulation of gap junctional channels from nonjunctional pools, rather than to increased protein expression or decreased turnover. Coexpression of native Cx43 fully rescued the aberrant tagged-connexin phenotype, but only if channels were composed predominately of untagged connexin. Confocal image analysis revealed that, subsequent to GJ nucleation, ZO-1 association with Cx43 GJs is independent of plaque size. We propose that ZO-1 controls the rate of Cx43 channel accretion at GJ peripheries, which, in conjunction with the rate of GJ turnover, regulates GJ size and distribution.  相似文献   

16.
Connexin 43 (Cx43) is a gap junction (GJ) protein widely expressed in mammalian tissues that mediates cell-to-cell coupling. Intercellular channels comprising GJ aggregates form from docking of paired connexons, with one each contributed by apposing cells. Zonula occludens-1 (ZO-1) binds the carboxy terminus of Cx43, and we have previously shown that inhibition of the Cx43/ZO-1 interaction increases GJ size by 48 h. Here we demonstrated that increases in GJ aggregation occur within 2 h (~Cx43 half-life) following disruption of Cx43/ZO-1. Immunoprecipitation and Duolink protein-protein interaction assays indicated that inhibition targets ZO-1 binding with Cx43 in GJs as well as connexons in an adjacent domain that we term the "perinexus." Consistent with GJ size increases being matched by decreases in connexons, inhibition of Cx43/ZO-1 reduced the extent of perinexal interaction, increased the proportion of connexons docked in GJs relative to undocked connexons in the plasma membrane, and increased GJ intercellular communication while concomitantly decreasing hemichannel-mediated membrane permeance in contacting, but not noncontacting, cells. ZO-1 small interfering RNA and overexpression experiments verified that loss and gain of ZO-1 function govern the transition of connexons into GJs. It is concluded that ZO-1 regulates the rate of undocked connexon aggregation into GJs, enabling dynamic partitioning of Cx43 channel function between junctional and proximal nonjunctional domains of plasma membrane.  相似文献   

17.
18.
Gap junctions (GJs) traverse apposing membranes of neighboring cells to mediate intercellular communication by passive diffusion of signaling molecules. We have shown previously that cells endocytose GJs utilizing the clathrin machinery. Endocytosis generates cytoplasmic double-membrane vesicles termed annular gap junctions or connexosomes. However, the signaling pathways and protein modifications that trigger GJ endocytosis are largely unknown. Treating mouse embryonic stem cell colonies – endogenously expressing the GJ protein connexin43 (Cx43) – with epidermal growth factor (EGF) inhibited intercellular communication by 64% and activated both, MAPK and PKC signaling cascades to phosphorylate Cx43 on serines 262, 279/282, and 368. Upon EGF treatment Cx43 phosphorylation transiently increased up to 4-fold and induced efficient (66.4%) GJ endocytosis as evidenced by a 5.9-fold increase in Cx43/clathrin co-precipitation.  相似文献   

19.
Zonula occludens (ZO)-1 is emerging as a central player in the control of gap junction (GJ) dynamics. Previously the authors reported that ZO-1 localizes preferentially to the periphery of Cx43 GJs. How ZO-1 arrives at GJ edges is unknown, but this targeting might involve we established interaction between the Cx43 C-terminus and the PDZ2 domain of ZO-1. Here the show that despite blocking the canonical PDZ2-mediated interaction by fusion of GFP to the C-terminus of Cx43, ZO-1 continued to target to domains juxtaposed with the edges of GJs comprised solely of tagged Cx43. This edge-association was not abolished by deletion of PDZ2 from ZO-1, as mutant ZO-1 also targeted to the periphery of GJs composed of either tagged or untagged Cx43. Additionally, ZO-2 was found colocalized with ZO-1 at GJ edges. These data demonstrate that ZO-1 targets to GJ edges independently of several known PDZ2-mediated interactions, including ZO-1 homodimerization, heterodimerization with ZO-2, and direct ZO-1 binding to the C-terminal residues of Cx43.  相似文献   

20.
Connexin 43 (Cx43) is a predominant gap junction (GJ) protein expressed by alveolar epithelial cells (AEC) in primary cell culture. Cx43 trafficking, assembly, and turnover are regulated by multiple mechanisms, including those mediated by integrins, by extracellular matrix, and by the cytoskeleton. Immunocytochemical double labeling demonstrates association of microtubules with internalization of Cx43-positive GJ plaques. Antibodies against the alpha 5-integrin subunit block cell-matrix interactions without effect on tubulin expression, whereas inhibition of MAP kinase kinase by PD-98059 reduces tubulin expression, based on both Western blot and immunostaining. To examine direct association of microtubules (MT) with GJ plaques, we treated day 3 AEC for 0.5-24 h with colchicine, an inhibitor of tubulin polymerization. After 60 min, MTs were disassembled, whereas Western blot analysis showed no change in tubulin expression. In parallel, colchicine initiated redistribution of immunopositive Cx43 from the membrane to the cytosol. These observations support the premise that direct association of the cytoskeleton with gap junctions plays a significant role in regulation of Cx43 expression and distribution through integrin-mediated signal transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号