首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The role of pelvic floor muscle contraction in the genesis of anal canal pressure is not clear. Recent studies have suggested that vaginal distension increases pelvic floor muscle contraction. We studied the effects of vaginal distension on anal canal pressure in 15 nullipara asymptomatic women. Anal pressure, rest, and squeeze were measured using station pull-through manometry techniques with no vaginal probe, a 10-mm vaginal probe, and a 25-mm vaginal probe in place. Rest and squeeze vaginal pressures were significantly higher when measured with the 25-mm probe compared with the 10-mm probe, suggesting that vaginal distension enhances pelvic floor contraction. In the presence of the 25-mm vaginal probe, rest and squeeze anal pressures in the proximal part of the anal canal were significantly higher compared with no vaginal probe or the 10-mm vaginal probe. On the other hand, distal anal pressures were not affected by any of the vaginal probes. Ultrasound imaging of the pelvic floor revealed that vaginal distension increased the anterior-posterior length of the puborectalis muscle. Atropine at 15 micro g/kg had no influence on the rest and squeeze anal pressures with or without vaginal distension. Our data suggest that pelvic floor contractions increase pressures in the proximal part of the anal canal, which is anatomically surrounded by the puborectalis muscle. We propose that pelvic floor contraction plays an important role in the fecal continence mechanism by increasing anal canal pressure.  相似文献   

2.
Step changes in length (between -3 and +5 nm per half-sarcomere) were imposed on isolated muscle fibers at the plateau of an isometric tetanus (tension T0) and on the same fibers in rigor after permeabilization of the sarcolemma, to determine stiffness of the half-sarcomere in the two conditions. To identify the contribution of actin filaments to the total half-sarcomere compliance (C), measurements were made at sarcomere lengths between 2.00 and 2.15 microm, where the number of myosin cross-bridges in the region of overlap between the myosin filament and the actin filament remains constant, and only the length of the nonoverlapped region of the actin filament changes with sarcomere length. At 2.1 microm sarcomere length, C was 3.9 nm T0(-1) in active isometric contraction and 2.6 nm T0(-1) in rigor. The actin filament compliance, estimated from the slope of the relation between C and sarcomere length, was 2.3 nm microm(-1) T0(-1). Recent x-ray diffraction experiments suggest that the myosin filament compliance is 1.3 nm microm(-1) T0(-1). With these values for filament compliance, the difference in half-sarcomere compliance between isometric contraction and rigor indicates that the fraction of myosin cross-bridges attached to actin in isometric contraction is not larger than 0.43, assuming that cross-bridge elasticity is the same in isometric contraction and rigor.  相似文献   

3.
Desire to defecate is associated with a unique anal contractile response, the sensorimotor response (SMR). However, the precise muscle(s) involved is not known. We aimed to examine the role of external and internal anal sphincter and the puborectalis muscle in the genesis of SMR. Anorectal 3-D pressure topography was performed in 10 healthy subjects during graded rectal balloon distention using a novel high-definition manometry system consisting of a probe with 256 pressure sensors arranged circumferentially. The anal pressure changes before, during, and after the onset of SMR were measured at every millimeter along the length of anal canal and in 3-D by dividing the anal canal into 4 × 2.1-mm grids. Pressures were assessed in the longitudinal and anterior-posterior axis. Anal ultrasound was performed to assess puborectalis morphology. 3-D topography demonstrated that rectal distention produced an SMR coinciding with desire to defecate and predominantly induced by contraction of puborectalis. Anal ultrasound showed that the puborectalis was located at mean distance of 3.5 cm from anal verge, which corresponded with peak pressure difference between the anterior and posterior vectors observed at 3.4 cm with 3-D topography (r = 0.77). The highest absolute and percentage increases in pressure during SMR were seen in the superior-posterior portion of anal canal, reaffirming the role of puborectalis. The SMR anal pressure profile showed a peak pressure at 1.6 cm from anal verge in the anterior and posterior vectors and distinct increase in pressure only posteriorly at 3.2 cm corresponding to puborectalis. We concluded that SMR is primarily induced by the activation and contraction of the puborectalis muscle in response to a sensation of a desire to defecate.  相似文献   

4.
Length-tension relation in Limulus striated muscle   总被引:1,自引:1,他引:0       下载免费PDF全文
Laser diffraction techniques coupled with simultaneous tension measurements were used to determine the length-tension relation in intact, small (0.5-mm thick, 10-mm wide, 20-25-mm long) bundles of a Limulus (horseshoe crab) striated muscle, the telson levator muscle. This muscle differs from the model vertebrate systems in that the thick filaments are not of a constant length, but shorten from 4.9 to approximately 2.0 micrometers as the sarcomeres shorten from 7 to 3 micrometers. In the Limulus muscle, the length-tension relation plateaued to an average maximum tension of 0.34 N/mm2 at a sarcomere length of 6.5 micrometers (Lo) to 8.0 micrometers. In the sarcomere length range from 3.8 to 12.5 micrometers, the muscle developed 50% or more of the maximum tension. When the sarcomere lengths are normalized (expressed as L/Lo) and the Limulus data are compared to those from frog muscle, it is apparent that Limulus muscle develops tension over a relatively greater range of sarcomere lengths.  相似文献   

5.
Sarcomere shortening during contraction was measured by using laser diffraction, in thin, rabbit right ventricular (RV) trabeculae from normal hearts (N) (n = 5) and from hearts subjected to RV pressure overload by pulmonary banding (H) (n = 5). Banding resulted in substantial RV hypertrophy after 2 wk. Hypertrophied preparations had the same resting muscle length (H = 3.15 +/- 0.29 mm) and resting sarcomere lengths (H = 2.16 +/- 0.005 micron) as the normal preparations (3.10 +/- 0.37 mm, 2.16 +/- 0.008 micron, respectively). Total tension at the peak of isometric twitches was the same as normal in the hypertrophied muscles (N = 8.06 +/- 1.20, H = 8.51 +/- 1.95 g/mm2). However, the amount of auxotonic sarcomere shortening was much less than normal in the hypertrophied preparations (N = 0.39 +/- 0.028, H = 0.19 +/- 0.034 micron; P less than 0.001). In isotonic contractions in which the ratio of muscle shortening to resting muscle length was the same in both the normal and hypertrophied muscles (ratio of 0.05 in both groups), the extent of sarcomere shortening relative to resting sarcomere length was less in the hypertrophied muscles than in the normal preparations (N = 0.14 +/- 0.01), H = 0.07 +/- 0.01; P less than 0.01). Series elasticity was the same as normal in the hypertrophied muscle P less than 0.05). Less auxotonic sarcomere shortening for a given level of isometric tension development and less isotonic sarcomere shortening per unit muscle shortening indicate that there is less than normal work per sarcomere during contraction in hypertrophied myocardium. These findings may have important implications for intracellular compensatory adaptation in pressure overload cardiac hypertrophy.  相似文献   

6.
A low-cost, high-resolution (spatial and temporal) image analysis system was developed to measure sarcomere length (Sl) during fast twitch of isolated striated muscle fibers at different temperatures. Fiber images were examined during twitch with an imaging rate of 220 Hz. To increase temporal resolution beyond 220 Hz, consecutive temporally shifted image sequences (N sequences) were acquired. Individual or average Sl was directly measured from a horizontal profile without spatial-frequency assessment. Measurement precision (E) was determined and expressed as: E(%) = 100xPs/(IsxSl), where Ps is the pixel size and Is the involved sarcomere number. At 18 degrees C during isometric twitch, Sls were measured with 220 Hz temporal and 0.2% spatial resolutions. Sl shortened in the central region (0.21+/-0.12 microm) as tension developed, reaching a maximal shortening of 8.09 + 2.05% (at rest, Sl = 2.59+/-0.05 microm, n = 4) in 32.5+/-1.96 ms. At 30 degrees C, Sl variations were examined with 880 Hz temporal resolution, in which case maximal S1 shortening was reached in 15.74+/-1.99 ms, and then decreased to 5.19+/-1.97% (at rest, S1 = 2.6+/-0.06 microm). The twitch tension developed by the whole fiber was recorded and compared with sarcomere length behavior. Sarcomere length variations in the central region were representative of overall developed tensions at 18 and 30 degrees C.  相似文献   

7.
Myocardial function is enhanced by endurance exercise training, but the cellular mechanisms underlying this improved function remain unclear. Exercise training increases the sensitivity of rat cardiac myocytes to activation by Ca(2+), and this Ca(2+) sensitivity has been shown to be highly dependent on sarcomere length. We tested the hypothesis that exercise training increases this length dependence in cardiac myocytes. Female Sprague-Dawley rats were divided into sedentary control (C) and exercise-trained (T) groups. The T rats underwent 11 wk of progressive treadmill exercise. Heart weight increased by 14% in T compared with C rats, and plantaris muscle citrate synthase activity showed a 39% increase with training. Steady-state tension was determined in permeabilized myocytes by using solutions of various Ca(2+) concentration (pCa), and tension-pCa curves were generated at two different sarcomere lengths for each myocyte (1.9 and 2.3 microm). We found an increased sarcomere length dependence of both maximal tension and pCa(50) (the Ca(2+) concentration giving 50% of maximal tension) in T compared with C myocytes. The DeltapCa(50) between the long and short sarcomere length was 0.084 +/- 0.023 (mean +/- SD) in myocytes from C hearts compared with 0.132 +/- 0.014 in myocytes from T hearts (n = 50 myocytes per group). The Deltamaximal tension was 5.11 +/- 1.42 kN/m(2) in C myocytes and 9.01 +/- 1.28 in T myocytes. We conclude that exercise training increases the length dependence of maximal and submaximal tension in cardiac myocytes, and this change may underlie, at least in part, training-induced enhancement of myocardial function.  相似文献   

8.
The external anal sphincter (EAS) plays a critical role in maintaining fecal continence; however, cerebral cortical control of voluntary EAS contraction is not completely understood. Our aims were to determine the cortical areas associated with voluntary EAS contraction and to determine the effect of two levels of sphincter contraction effort on brain activity. Seventeen asymptomatic adults (ages 21-48, 9 male) were studied using functional magnetic resonance imaging (fMRI) to detect brain activity. Studies were done in two stages. In stage 1 (10 subjects, 5 male), anal sphincter pressure was monitored from a catheter-affixed bag. Subjects performed maximal and submaximal EAS contractions during two fMRI scanning sessions consisting of alternating 10-s intervals of sustained contraction and rest. In stage 2 studies, seven subjects (4 male) performed only maximum effort sphincter contractions without a catheter. EAS contraction was associated with multifocal fMRI activity in sensory/motor, anterior cingulate, prefrontal, parietal, occipital, and insular regions. Total cortical activity volume was significantly larger (P < 0.05) for maximal (5,175 +/- 720 microl) compared with submaximal effort contractions (2,558 +/- 306 microl). Similarly, percent fMRI signal change was significantly higher (P < 0.05) for maximal (4.8 +/- 0.1%) compared with submaximal effort contractions (2.2 +/- 0.1%). Cortical region-of-interest analysis showed the incidence of insular activation to be more common in women compared with men. Other cortical regions showed no such gender differences. fMRI activity detected in stage 2 showed similar regions of cortical activation to those of the stage 1 study. Willful contraction of the EAS is associated with multifocal cerebral cortical activity. The volume and intensity of cerebral cortical activation is commensurate with the level of contractile effort.  相似文献   

9.
Soleus muscle fibers were examined electron microscopically from pre- and postflight biopsies of four astronauts orbited for 17 days during the Life and Microgravity Sciences Spacelab Mission (June 1996). Myofilament density and spacing were normalized to a 2. 4-microm sarcomere length. Thick filament density ( approximately 1, 062 filaments/microm(2)) and spacing ( approximately 32.5 nm) were unchanged by spaceflight. Preflight thin filament density (2, 976/microm(2)) decreased significantly (P < 0.01) to 2,215/microm(2) in the overlap A band region as a result of a 17% filament loss and a 9% increase in short filaments. Normal fibers had 13% short thin filaments. The 26% decrease in thin filaments is consistent with preliminary findings of a 14% increase in the myosin-to-actin ratio. Lower thin filament density was calculated to increase thick-to-thin filament spacing in vivo from 17 to 23 nm. Decreased density is postulated to promote earlier cross-bridge detachment and faster contraction velocity. Atrophic fibers may be more susceptible to sarcomere reloading damage, because force per thin filament is estimated to increase by 23%.  相似文献   

10.
Durophagous crabs successfully hunt hard-shelled prey by subjecting them to extremely strong biting forces using their claws. Here I show that, for a given body mass, six species of Cancer crabs (Cancer antennarius, Cancer branneri, Cancer gracilis, Cancer magister, Cancer oregonensis and Cancer productus) were able to exert mean maximum biting forces greater than the forces exerted in any other activity by most other animals. These strong biting forces were in part a result of the high stresses (740-1350 kN m(-2)) generated by the claw closer muscle. Furthermore, the maximum muscle stress increased with increasing mean resting sarcomere length (10-18 microm) for the closer muscle of the claws of these six Cancer species. A more extensive analysis incorporating published data on muscle stresses in other animal groups revealed that stress scales isometrically with the resting sarcomere length among species, as predicted by the sliding filament model of muscle contraction. Therefore, muscle or filament traits other than a very long mean sarcomere length need not be invoked in explaining the high stresses generated by crustacean claws.  相似文献   

11.
Force responses to fast ramp stretches of various amplitude and velocity, applied during tetanic contractions, were measured in single intact fibers from frog tibialis anterior muscle. Experiments were performed at 14 degrees C at approximately 2.1 microm sarcomere length on fibers bathed in Ringer's solution containing various concentrations of 2,3-butanedione monoxime (BDM) to greatly reduce the isometric tension. The fast tension transient produced by the stretch was followed by a period, lasting until relaxation, during which the tension remained constant to a value that greatly exceeded the isometric tension. The excess of tension was termed "static tension," and the ratio between the force and the accompanying sarcomere length change was termed "static stiffness." The static stiffness was independent of the active tension developed by the fiber, and independent of stretch amplitude and stretching velocity in the whole range tested; it increased with sarcomere length in the range 2.1-2.8 microm, to decrease again at longer lengths. Static stiffness increased well ahead of tension during the tetanus rise, and fell ahead of tension during relaxation. These results suggest that activation increased the stiffness of some sarcomeric structure(s) outside the cross-bridges.  相似文献   

12.
The postnatal changes in resting muscle tension were investigated at 20 degrees C by using small muscle fiber bundles isolated from either the extensor digitorum longus or the soleus of both neonatal (7-21 days old) and adult rats. The results show that the tension-extension characteristics of the bundles depended on the age of the rats. For example, both the extensor digitorum longus and soleus bundles of rats older than 14 days showed characteristic differences that were absent in bundles from younger rats. Furthermore, the tension-extension relation of the adult slow muscle fiber bundles were similar to those of the two neonatal muscles and were shifted to longer sarcomere lengths relative to those of the adult fast-fiber bundles. Thus, at the extended sarcomere length of 2.9 microm, the adult fast muscle fiber bundles developed higher resting tensions (5.6 +/- 0.5 kN/m2) than either the two neonatal ( approximately 3 kN/m2) or the adult slow (3.1 +/- 0.4 kN/m2) muscle fiber bundles. At all ages examined, the resting tension responses to a ramp stretch were qualitatively similar and consisted of three components: a viscous, a viscoelastic, and an elastic tension. However, in rats older than 14 days, all three tension components showed clear fast- and slow-fiber type differences that were absent in younger rats. Bundles from 7-day-old rats also developed significantly lower resting tensions than the corresponding adult ones. Additionally, the resting tension characteristics of the adult muscles were not affected by chemical skinning. From these results, we conclude that in rats resting muscle tension, like active tension, differentiates within the first 3 wk after birth.  相似文献   

13.
The interplay between passive and active mechanical properties of indirect flight muscle of the waterbug (Lethocerus) was investigated. A functional dissection of the relative contribution of cross-bridges, actin filaments, and C filaments to tension and stiffness of passive, activated, and rigor fibers was carried out by comparing mechanical properties at different ionic strengths of sarcomeres with and without thin filaments. Selective thin filament removal was accomplished by treatment with the actin-severving protein gelsolin. Thin filament, removal had no effect on passive tension, indicating that the C filament and the actin filament are mechanically independent and that passive tension is developed by the C filament in response to sarcomere stretch. Passive tension increased steeply with sarcomere length until an elastic limit was reached at only 6-7% sarcomere extension, which corresponds to an extension of 350% of the C filament. The passive tension-length relation of insect flight muscle was analyzed using a segmental extension model of passive tension development (Wang, K, R. McCarter, J. Wright, B. Jennate, and R Ramirez-Mitchell. 1991. Proc. Natl. Acad. Sci. USA. 88:7101-7109). Thin filament removal greatly depressed high frequency passive stiffness (2.2 kHz) and eliminated the ionic strength sensitivity of passive stiffness. It is likely that the passive stiffness component that is removed by gelsolin is derived from weak-binding cross-bridges, while the component that remains is derived from the C filament. Our results indicate that a significant number of weak-binding cross-bridges exist in passive insect muscle at room temperature and at an ionic strength of 195 mM. Analysis of rigor muscle indicated that while rigor tension is entirely actin based, rigor stiffness contains a component that resists gelsolin treatment and is therefore likely to be C filament based. Active tension and active stiffness of unextracted fibers were directly proportional to passive tension before activation. Similarly, passive stiffness due to weak bridges also increased linearly with passive tension, up to a limit. These correlations lead us to propose a stress-activation model for insect flight muscle in which passive tension is a prerequisite for the formation of both weak-binding and strong-binding cross-bridges.  相似文献   

14.
The sliding filament and cross-bridge theories of muscle contraction provide discrete predictions of the tetanic force-length relationship of skeletal muscle that have been tested experimentally. The active force generated by a maximally activated single fiber (with sarcomere length control) is maximal when the filament overlap is optimized and is proportionally decreased when overlap is diminished. The force-length relationship is a static property of skeletal muscle and, therefore, it does not predict the consequences of dynamic contractions. Changes in sarcomere length during muscle contraction result in modulation of the active force that is not necessarily predicted by the cross-bridge theory. The results of in vivo studies of the force-length relationship suggest that muscles that operate on the ascending limb of the force-length relationship typically function in stretch-shortening cycle contractions, and muscles that operate on the descending limb typically function in shorten-stretch cycle contractions. The joint moments produced by a muscle depend on the moment arm and the sarcomere length of the muscle. Moment arm magnitude also affects the excursion (length change) of a muscle for a given change in joint angle, and the number of sarcomeres arranged in series within a muscle fiber determines the sarcomere length change associated with a given excursion.  相似文献   

15.
Mechanisms underlying dilated cardiomyopathy (DCM) are poorly understood and effective therapy is still unavailable. The aim of this study was to examine the heart ultrastructure and dynamic of BIO T0-2 cardiomyopathic hamsters, an animal model of DCM, and to study in these animals, the effects of a co-formulation (HS12607) of propionyl-L-carnitine, coenzyme Q(10) and omega-3 fatty acids on cardiac mechanical parameters. Sarcomere length, Frank-Starling mechanism and force-frequency relations were studied on isolated ventricular papillary muscle from age-matched BIO F1B normal Syrian hamsters, BIO T0-2 control and BIO T0-2 HS12607-treated cardiomyopathic Syrian hamsters. At the optimum length to maximum active force, electron microscopy of left ventricular papillary muscle revealed that seven out of ten muscles studied showed shorter sarcomeres (1.20 +/- 0.29 microm), and the remaining three showed longer sarcomeres (2.80 +/- 0.13 microm), compared to those of normal hamsters (2.05 +/- 0.06 microm, n = 10). Severe alterations of the Frank-Starling mechanism, force-frequency relations and derivative parameters of contractile waves were also observed in vitro in the BIO T0-2 control hamsters. Long-term (8 weeks) treatment with HS12607 prevented alterations in sarcomere length in the BIO T0-2 cardiomyopathic hamsters; the Frank-Starling mechanism and force-frequency relations were also significantly (P < 0.05) improved in these hamsters. Therefore results of the present study strongly suggest the need for clinical studies on metabolic therapeutic intervention in the effort to stop the progression of dilated cardiomyopathy.  相似文献   

16.
Titin (also known as connectin) is a giant filamentous protein whose elastic properties greatly contribute to the passive force in muscle. In the sarcomere, the elastic I-band segment of titin may interact with the thin filaments, possibly affecting the molecule's elastic behavior. Indeed, several studies have indicated that interactions between titin and actin occur in vitro and may occur in the sarcomere as well. To explore the properties of titin alone, one must first eliminate the modulating effect of the thin filaments by selectively removing them. In the present work, thin filaments were selectively removed from the cardiac myocyte by using a gelsolin fragment. Partial extraction left behind approximately 100-nm-long thin filaments protruding from the Z-line, whereas the rest of the I-band became devoid of thin filaments, exposing titin. By applying a much more extensive gelsolin treatment, we also removed the remaining short thin filaments near the Z-line. After extraction, the extensibility of titin was studied by using immunoelectron microscopy, and the passive force-sarcomere length relation was determined by using mechanical techniques. Titin's regional extensibility was not detectably affected by partial thin-filament extraction. Passive force, on the other hand, was reduced at sarcomere lengths longer than approximately 2.1 microm, with a 33 +/- 9% reduction at 2.6 microm. After a complete extraction, the slack sarcomere length was reduced to approximately 1.7 microm. The segment of titin near the Z-line, which is otherwise inextensible, collapsed toward the Z-line in sarcomeres shorter than approximately 2.0 microm, but it was extended in sarcomeres longer than approximately 2.3 microm. Passive force became elevated at sarcomere lengths between approximately 1.7 and approximately 2.1 microm, but was reduced at sarcomere lengths of >2.3 microm. These changes can be accounted for by modeling titin as two wormlike chains in series, one of which increases its contour length by recruitment of the titin segment near the Z-line into the elastic pool.  相似文献   

17.
When relaxed striated muscle cells are stretched, a resting tension is produced which is thought to arise from stretching long, elastic filaments composed of titin (also called connectin). Here, I show that single skinned rabbit soleus muscle fibers produce resting tension that is several-fold lower than that found in rabbit psoas fibers. At sarcomere lengths where the slope of the resting tension-sarcomere length relation is low, electron microscopy of skinned fibers indicates that thick filaments move from the center to the side of the sarcomere during prolonged activation. As sarcomeres are stretched and the resting tension sarcomere length relation becomes steeper, this movement is decreased. The sarcomere length range over which thick filament movement decreases is higher in soleus than in psoas fibers, paralleling the different lengths at which the slope of the resting tension-sarcomere length relations increase. These results indicate that the large differences in resting tension between single psoas and soleus fibers are due to different tensions exerted by the elastic elements linking the end of each thick filament to the nearest Z-disc, i.e., the titin filaments. Quantitative gel electrophoresis of proteins from single muscle fibers excludes the possibility that resting tension is less in soleus than in psoas fibers simply because they have fewer titin filaments. A small difference in the electrophoretic mobility of titin between psoas and soleus fibers suggests the alternate possibility that mammalian muscle cells use at least two titin isoforms with differing elastic properties to produce variations in resting tension.  相似文献   

18.
Sarcomere length and first-order diffraction line width were measured by laser diffraction during elongation of activated frog tibialis anterior muscle fiber bundles (i.e., eccentric contraction) at nominal fiber strains of 10, 25, or 35% (n = 18) for 10 successive contractions. Tetanic tension, measured just before each eccentric contraction, differed significantly among strain groups and changed dramatically during the 10-contraction treatment (P < 0.01). Average maximum tetanic tension for the three groups measured before any treatment was 203.7 +/- 6.8 kN/m2, but after the 10-eccentric contraction sequence decreased to 180.3 +/- 3.8, 125.1 +/- 7.8, and 78.3 +/- 5.1 kN/m2 for the 10, 25, and 35% strain groups, respectively (P < 0.0001). Addition of 10 mM caffeine to the bathing medium decreased the loss of tetanic tension in the 10% strain group but had only a minimal effect on either the 25 or 35% strain groups. Diffraction pattern line width, a measure of sarcomere length heterogeneity, increased significantly with muscle activation and then continued to increase with successive stretches of the activated muscle. Line width increase after each stretch was significantly correlated with the lower yield tension of the successive contractile record. These data demonstrate a direct association and, perhaps, a causal relationship between sarcomere strain and fiber bundle injury. They also demonstrate that muscle injury is accompanied by a progressive increase in sarcomere length heterogeneity, yielding lower yield tension as injury progresses.  相似文献   

19.
The properties of some models of the actin filament are compared with those of the thin filament in muscle. The greater stiffness of thin filaments ex vivo with respect to F-actin in vitro is attributed to the effect of both protein osmotic pressure and the attached cross-bridges. By comparing the stiffness of thin filaments in vitro and in isometric and rigor muscles the stiffness of thin filaments in relaxed muscle is computed. The upper limit of thin filament stretching is deduced to approach approximately 10 nm microm(-1). It is also calculated that, on stretching by 2.02 nm of the fully non-overlapped thin filament or by 1.59 nm of the thin filament on isometric contraction, the energy released on the hydrolysis of one molecule of ATP is fully used up.  相似文献   

20.
Nicola J.  Dimery 《Journal of Zoology》1985,205(3):373-383
Rabbits were filmed galloping, and the length changes of the principal hind limb muscles were determined. Sarcomere lengths were measured in carcasses set by rigor mortis in four of the positions adopted during a stride. These sarcomere lengths were measured by means of a diffraction technique, devised for the purpose, using an ordinary microscope. Expected sarcomere lengths for three of the positions were predicted from that observed in the fourth, together with muscle length changes. A theoretical length-tension curve for rabbit muscle was constructed, using A and I filament lengths, it was shown that when the muscles were active, their sarcomere lengths corresponded to the plateau of the length-tension curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号