首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The squamous cell carcinoma antigens 1 (SCCA1) and SCCA2 belong to the ovalbumin-serpin family. Although SCCA1 and SCCA2 are closely homologous, these two molecules have distinct properties; SCCA1 inhibits cysteine proteinases such as cathepsin K, L, and S, whereas SCCA2 inhibits serine proteinases such as cathepsin G and human mast cell chymase. Although several intrinsic target proteinases for SCCA1 and SCCA2 have been found, the biological roles of SCCA1 and SCCA2 remain unknown. A mite allergen, Der p 1, is one of the most immunodominant allergens and also acts as a cysteine proteinase probably involved in the pathogenesis of allergic diseases. We have recently shown that both SCCA1 and SCCA2 are induced by two related Th2-type cytokines, IL-4 and IL-13, in bronchial epithelial cells and that SCCA expression is augmented in bronchial asthma patients. In this study, we explored the possibility that SCCA proteins target Der p 1, and it turned out that SCCA2, but not SCCA1, inhibited the catalytic activities of Der p 1. We furthermore analyzed the inhibitory mechanism of SCCA2 on Der p 1. SCCA2 contributed the suicide substrate-like mechanism without formation of a covalent complex, causing irreversible impairment of the catalytic activity of Der p 1, as SCCA1 does on papain. In addition, resistance to cleavage by Der p 1 also contributed to the inhibitory mechanism of SCCA2. These results suggest that SCCA2 acts as a cross-class serpin targeting an extrinsic cysteine proteinase derived from house dust mites and that it may have a protective role against biological reactions caused by mites.  相似文献   

2.
Besides the mechanistic similarities, in particular acylenzyme formation, kinetic investigations and X-ray diffraction studies have revealed some differences between the mechanisms of serine and cysteine proteinases: general base-catalysis in acylation, catalytic contribution by oxyanion binding, and a negatively charged catalytic triad in serine proteinases, but not in cysteine proteinases. In this paper we point out that all these differences are related and connected with the mode of stabilization of the zwitterionic species developing in the transition state of the reactions. In the case of serine proteinases this charge separation requires facilitation by the oxyanion binding and the negative charge of the catalytic triad. On the other hand cysteine proteinases do not require such contributions as they are capable of stabilizing the ion-pair even in the ground state of the reaction. Therefore, cysteine proteinases, in contrast to serine proteinases, may be regarded as "activated" enzymes.  相似文献   

3.
Escherichia coli Spr is a membrane-anchored cell wall hydrolase. The solution NMR structure of the C-terminal NlpC/P60 domain of E. coli Spr described here reveals that the protein adopts a papain-like alpha+beta fold and identifies a substrate-binding cleft featuring several highly conserved residues. The active site features a novel Cys-His-His catalytic triad that appears to be a unique structural signature of this cysteine peptidase family. Moreover, the relative orientation of these catalytic residues is similar to that observed in the analogous Ser-His-His triad, a variant of the classic Ser-His-Asp charge relay system, suggesting the convergent evolution of a catalytic mechanism in quite distinct peptidase families.  相似文献   

4.
Isolation of two cDNA sequences which encode cytotoxic cell proteases   总被引:4,自引:0,他引:4  
Two cDNAs which cross-hybridized with cytotoxic cell protease genes were identified in a library generated from a cytotoxic T cell line. Sequence analysis revealed that the two new members of the family contained the three catalytic triad residues which characterize the active sites of serine proteases. A comparison of the protein sequences revealed not only a high degree of homology but also the conservation of some unusual structural features. These include the lack of a disulphide bond which spans the active site serine, the presence of a signal sequence and the inference of a dipeptide activation sequence.  相似文献   

5.
NopT1 and NopT2, putative type III effectors from the plant symbiotic bacterium Bradyrhizobium japonicum, are predicted to belong to a family of YopT/AvrPphB effectors, which are cysteine proteases. In the present study, we showed that both NopT1 and NopT2 indeed possess cysteine protease activity. When overexpressed in Escherichia coli, both NopT1 and NopT2 undergo autoproteolytic processing which is largely abolished in the presence of E-64, a papain family-specific inhibitor. Mutations of NopT1 disrupting either the catalytic triad or the putative autoproteolytic site reduce or markedly abolish the protease activity. Autocleavage likely occurs between residues K48 and M49, though another potential cleavage site is also possible. NopT1 also elicitis HR-like cell death when transiently expressed in tobacco plants and its cysteine protease activity is essential for this ability. In contrast, no macroscopic symptoms were observed for NopT2. Furthermore, mutational analysis provided evidence that NopT1 may undergo acylation inside plant cells and that this would be required for its capacity to elicit HR-like cell death in tobacco.  相似文献   

6.
Amidase signature family enzymes, which are widespread in nature, contain a newly identified Ser-cisSer-Lys catalytic triad in which the peptide bond between Ser131 and the preceding residue Gly130 is in a cis configuration. In order to characterize the property of the novel triad, we have determined the structures of five mutant malonamidase E2 enzymes that contain a Cys-cisSer-Lys, Ser-cisAla-Lys, or Ser-cisSer-Ala triad or a substitution of Gly130 with alanine. Cysteine cannot replace the role of Ser155 due to a hyper-reactivity of the residue, which results in the modification of the cysteine to cysteinyl sulfinic acid, most likely inside the expression host cells. The lysine residue plays a structural as well as a catalytic role, since the substitution of the residue with alanine disrupts the active site structure completely. The two observations are in sharp contrast with the consequences of the corresponding substitutions in the classical Ser-His-Asp triad. Structural data on the mutant containing the Ser-cisAla-Lys triad convincingly suggest that Ser131 plays an analogous catalytic role as the histidine of the Ser-His-Asp triad. The unusual cis configuration of Ser131 appears essential for the precise contacts of this residue with the other triad residues, as indicated by the near invariance of the preceding glycine residue (Gly130), structural data on the G130A mutant, and by a modeling experiment. The data provide a deep understanding of the role of each residue of the new triad at the atomic level and demonstrate that the new triad is a catalytic device distinctively different from the classical triad or its variants.  相似文献   

7.
The alpha/beta‐hydrolases are a family of acid‐base‐nucleophile catalytic triad enzymes with a common fold, but using a wide variety of substrates, having different pH optima, catalyzing unique catalytic reactions and often showing improved chemical and thermo stability. The ABH enzymes are prime targets for protein engineering. Here, we have classified active sites from 51 representative members of 40 structural ABH fold families into eight distinct conserved geometries. We demonstrate the occurrence of a common structural motif, the catalytic acid zone, at the catalytic triad acid turn. We show that binding of an external ligand does not change the structure of the catalytic acid zone and both the ligand‐free and ligand‐bound forms of the protein belong to the same catalytic acid zone subgroup. We also show that the catalytic acid zone coordinates the position of the catalytic histidine loop directly above its plane, and consequently, fixes the catalytic histidine in a proper position near the catalytic acid. Finally, we demonstrate that the catalytic acid zone plays a key role in multi‐subunit complex formation in ABH enzymes, and is involved in interactions with other proteins. As a result, we speculate that each of the catalytic triad residues has its own supporting structural scaffold, similar to the catalytic acid zone, described above, which together form the extended catalytic triad motif. Each scaffold coordinates the function of its respective catalytic residue, and can even compensate for the loss of protein function, if the catalytic amino acid is mutated.  相似文献   

8.
粒酶B(granzyme B, GrB)是一种重要的丝氨酸蛋白酶参与细胞毒性T淋巴细胞(CTL)和自然杀伤细胞(NK)介导的细胞杀伤过程.为研究粒酶B在肿瘤细胞中异位表达后能否诱导细胞死亡,将构建的活性型粒酶B(GrBa)基因及其酶活性中心突变型(mGrBa)基因的真核表达载体,以脂质体法瞬时转染HeLa细胞,通过绿色荧光蛋白(GFP)共表达、间接免疫荧光、细胞计数、MTT等方法,观察到GrBa蛋白的异位表达引起多核巨细胞形态异常,并且表达细胞的生长受到抑制.Percoll分离多核巨细胞后,观察到其生长状态较差,是导致生长抑制的直接原因.细胞骨架破坏和具有多极纺锤体的异常有丝分裂,推测是多核巨细胞不断产生的根源.上述结果为GrBa应用于肿瘤基因治疗提供了一定依据.  相似文献   

9.
Using sequence similarity searches and top-of-the-range fold-recognition methods, we have identified a novel family of bacterial transglutaminase-like cysteine proteinases (BTLCPs) with an invariant Cys-His-Asp catalytic triad and a predicted N-terminal signal sequence. This family of previously uncharacterized hypothetical proteins encompasses sequences of unknown function from DUF920 (in the Pfam database) and COG3672. BTLCPs are predicted to possess the papain-like cysteine proteinase fold and catalyze post-translational protein modification through transamidase, acetylase or hydrolase activity. Inspection of neighboring genes encoding BTLCPs suggests a link between this predicted activity and a type-I secretion system resembling ATP-binding cassette exporters of toxins and proteases involved in bacterial pathogenicity.  相似文献   

10.
The growth stimulating effect of a copper-specific chelator, 2,9-dimethyl-4,7-diphenyl-1,10-phenonthroline-sulfonic acid on mouse lymphoma L1210 cells in vitro has been studied. Since they are defective in cystine transport, these cells require cysteine for their growth in vitro. However, addition of cysteine does not greatly enhance cell growth because it is rapidly oxidized to cystine. We have observed that the copper chelator potently inhibited oxidation of cysteine in culture medium and that simultaneous addition of cysteine and the chelator greatly enhanced cell growth. The chelator alone stimulated cell growth slightly by stabilizing a small amount of cysteine effluxed from the cells to the medium. The chelator also enhanced the growth promoting activity of 2-mercaptoethanol by stabilizing cysteine produced in the medium during culture. These results suggest that the chelator stimulates cell growth by inhibiting copper mediated oxidation of cysteine in culture medium.  相似文献   

11.
Serine repeat antigen 5 (SERA5) is an abundant antigen of the human malaria parasite Plasmodium falciparum and is the most strongly expressed member of the nine-gene SERA family. It appears to be essential for the maintenance of the erythrocytic cycle, unlike a number of other members of this family, and has been implicated in parasite egress and/or erythrocyte invasion. All SERA proteins possess a central domain that has homology to papain except in the case of SERA5 (and some other SERAs), where the active site cysteine has been replaced with a serine. To investigate if this domain retains catalytic activity, we expressed, purified, and refolded a recombinant form of the SERA5 enzyme domain. This protein possessed chymotrypsin-like proteolytic activity as it processed substrates downstream of aromatic residues, and its activity was reversed by the serine protease inhibitor 3,4-diisocoumarin. Although all Plasmodium SERA enzyme domain sequences share considerable homology, phylogenetic studies revealed two distinct clusters across the genus, separated according to whether they possess an active site serine or cysteine. All Plasmodia appear to have at least one member of each group. Consistent with separate biological roles for members of these two clusters, molecular modeling studies revealed that SERA5 and SERA6 enzyme domains have dramatically different surface properties, although both have a characteristic papain-like fold, catalytic cleft, and an appropriately positioned catalytic triad. This study provides impetus for the examination of SERA5 as a target for antimalarial drug design.  相似文献   

12.
Calpains are calcium activated cysteine proteases found throughout the animal, plant, and fungi kingdoms; 14 isoforms have been described in the human genome. Calpains have been implicated in multiple models of human disease; for instance, calpain 1 is activated in the brains of individuals with Alzheimer's disease, and the digestive tract specific calpain 9 is down-regulated in gastric cancer cell lines. We have solved the structures of human calpain 1 and calpain 9 protease cores using crystallographic methods; both structures have clear implications for the function of non-catalytic domains of full-length calpains in the calcium-mediated activation of the enzyme. The structure of minicalpain 1 is similar to previously solved structures of the protease core. Auto-inhibition in this system is most likely through rearrangements of a central helical/loop region near the active site cysteine, which occlude the substrate binding site. However, the structure of minicalpain 9 indicates that auto-inhibition in this enzyme is mediated through large intra-domain movements that misalign the catalytic triad. This disruption is reminiscent of the full-length inactive calpain conformation. The structures of the highly conserved, ubiquitously expressed human calpain 1 and the more tissue specific human calpain 9 indicate that although there are high levels of sequence conservation throughout the calpain family, isolated structures of family members are insufficient to explain the molecular mechanism of activation for this group of proteins.  相似文献   

13.
James MN 《Biological chemistry》2006,387(8):1023-1029
Fungi and viruses encode a variety of peptidases having a plethora of functions. Many fungal peptidases are extracellular and are likely used to degrade proteins in their environment. Viral peptidases are processing enzymes, intimately involved in the virus infectious cycle. The viral RNA genome is translated by the host-cell machinery into a large polyprotein that is cleaved by the viral peptidases into mature capsid proteins, non-structural proteins and enzymes. I review the structure and catalytic mechanism of scytalidoglutamic peptidase isolated from the wood-destroying fungus Scytalidium lignicolum. This enzyme has a unique beta-sandwich fold and a novel catalytic mechanism based on a glutamate, a glutamine and a nucleophilic water molecule. Hepatitis A virus (HAV) 3C peptidase was the first structure identified for a viral 3C enzyme that exhibited the three-dimensional fold of the chymotrypsin family of serine peptidases but had a cysteine sulfur atom instead of the serine oxygen as the nucleophile. The structure of HAV 3C was unusual in that the Asp residue expected as the third member of the catalytic triad did not interact with the general base His. The present structure is of a beta-lactone-inhibited version of HAV 3C that has a restored catalytic triad.  相似文献   

14.
The steps involved in the maturation of proenzymes belonging to the papain family of cysteine proteases have been difficult to characterize. Intermolecular processing at or near the pro/mature junction, due either to the catalytic activity of active enzyme or to exogeneous proteases, has been well documented for this family of proenzymes. In addition, kinetic studies are suggestive of a slow unimolecular mechanism of autoactivation which is independent of proenzyme concentration. However, inspection of the recently determined x-ray crystal structures does not support this evidence. This is due primarily to the extensive distances between the catalytic thiolate-imidazolium ion pair and the putative site of proteolysis near the pro/mature junction required to form mature protein. Furthermore, the prosegments for this family of precursors have been shown to bind through the substrate binding clefts in a direction opposite to that expected for natural substrates. We report, using cystatin C- and N-terminal sequencing, the identification of autoproteolytic intermediates of processing in vitro for purified recombinant procathepsin B and procathepsin S. Inspection of the x-ray crystal structures reported to date indicates that these reactions occur within a segment of the proregion which binds through the substrate binding clefts of the enzymes, thus suggesting that these reactions are occurring as unimolecular processes.  相似文献   

15.
Peptidoglycan recognition proteins (PGRPs) form a recently discovered protein family, which is conserved from insect to mammals and is implicated in the innate immune system by interacting with/or degrading microbial peptidoglycans (PGNs). Drosophila PGRP-SA is a member of this family of pattern recognition receptors and is involved in insect Toll activation. We report here the crystal structure of PGRP-SA at 1.56 A resolution, which represents the first example of a "recognition" PGRP. Comparison with the catalytic Drosophila PGRP-LB reveals an overall structure conservation with an L-shaped hydrophilic groove that is likely the PGN carbohydrate core binding site, but further suggests some possible functional homology between recognition and catalytic PGRPs. Consistent with sequence analysis, PGRP-SA does not contain the canonical zinc-binding residues found in catalytic PGRPs. However, substitution of the zinc-binding cysteine residue by serine, along with an altered coordinating histidine residue, assembles a constellation of residues that resembles a modified catalytic triad. The serine/histidine juxtaposition to a threonine residue and a carbonyl oxygen atom, along with conservation of the catalytic water molecule found in PGRP-LB, tantalizingly suggests some hydrolytic function for this member of receptor PGRPs.  相似文献   

16.

Background

Trypanosoma cruzi has a single flagellum attached to the cell body by a network of specialized cytoskeletal and membranous connections called the flagellum attachment zone. Previously, we isolated a DNA fragment (clone H49) which encodes tandemly arranged repeats of 68 amino acids associated with a high molecular weight cytoskeletal protein. In the current study, the genomic complexity of H49 and its relationships to the T. cruzi calpain-like cysteine peptidase family, comprising active calpains and calpain-like proteins, is addressed. Immunofluorescence analysis and biochemical fractionation were used to demonstrate the cellular location of H49 proteins.

Methods and Findings

All of H49 repeats are associated with calpain-like sequences. Sequence analysis demonstrated that this protein, now termed H49/calpain, consists of an amino-terminal catalytic cysteine protease domain II, followed by a large region of 68-amino acid repeats tandemly arranged and a carboxy-terminal segment carrying the protease domains II and III. The H49/calpains can be classified as calpain-like proteins as the cysteine protease catalytic triad has been partially conserved in these proteins. The H49/calpains repeats share less than 60% identity with other calpain-like proteins in Leishmania and T. brucei, and there is no immunological cross reaction among them. It is suggested that the expansion of H49/calpain repeats only occurred in T. cruzi after separation of a T. cruzi ancestor from other trypanosomatid lineages. Immunofluorescence and immunoblotting experiments demonstrated that H49/calpain is located along the flagellum attachment zone adjacent to the cell body.

Conclusions

H49/calpain contains large central region composed of 68-amino acid repeats tandemly arranged. They can be classified as calpain-like proteins as the cysteine protease catalytic triad is partially conserved in these proteins. H49/calpains could have a structural role, namely that of ensuring that the cell body remains attached to the flagellum by connecting the subpellicular microtubule array to it.  相似文献   

17.
There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into two subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates.  相似文献   

18.
The alpha/beta hydrolase fold.   总被引:21,自引:0,他引:21  
We have identified a new protein fold--the alpha/beta hydrolase fold--that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an alpha/beta sheet, not barrel, of eight beta-sheets connected by alpha-helices. These enzymes have diverged from a common ancestor so as to preserve the arrangement of the catalytic residues, not the binding site. They all have a catalytic triad, the elements of which are borne on loops which are the best-conserved structural features in the fold. Only the histidine in the nucleophile-histidine-acid catalytic triad is completely conserved, with the nucleophile and acid loops accommodating more than one type of amino acid. The unique topological and sequence arrangement of the triad residues produces a catalytic triad which is, in a sense, a mirror-image of the serine protease catalytic triad. There are now four groups of enzymes which contain catalytic triads and which are related by convergent evolution towards a stable, useful active site: the eukaryotic serine proteases, the cysteine proteases, subtilisins and the alpha/beta hydrolase fold enzymes.  相似文献   

19.
The ubiquitin-specific proteases (Ubps) are a family of largely dissimilar enzymes with two major conserved sequence regions, containing either a conserved cysteine residue or two conserved histidine residues, respectively. The murine Unp oncoprotein and its human homologue, Unph, both contain regions similar to the conserved Cys and His boxes common to all the Ubps. In this study we show that Unp and Unph are active deubiquitinating enzymes, being able to cleave ubiquitin from both natural and engineered linear ubiquitin-protein fusions, including the polyubiquitin precursor. Mutation of the conserved Unp Cys and His residues abolishes this activity, and identifies the likely His residue in the catalytic triad. Unp is tumorigenic when overexpressed in mice, leading to the suggestion that Unp may play a role in the regulation of ubiquitin-dependent protein degradation. We have demonstrated here that the high-level expression of Unp in yeast does not disrupt the degradation of the N-end rule substrate Tyr-beta-galactosidase (betagal), the non-N-end rule substrate ubiquitin-Pro-betagal, or the degradation of abnormal, canavanine-containing proteins. These data suggest that Unp is not a general modulator of ubiquitin-dependent proteolysis. However, Unp may have a role in the regulation of the degradation of a specific, as yet undescribed, substrate(s).  相似文献   

20.
Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs   总被引:10,自引:0,他引:10  
Epac1 (cAMP-GEFI) and Epac2 (cAMP-GEFII) are closely related guanine nucleotide exchange factors (GEFs) for the small GTPase Rap1, which are directly regulated by cAMP. Here we show that both GEFs efficiently activate Rap2 as well. A third member of the family, Repac (GFR), which lacks the cAMP dependent regulatory sequences, is a constitutive activator of both Rap1 and Rap2. In contrast to Epac1, Epac2 contains a second cAMP binding domain at the N terminus, as does the Epac homologue from Caenorhabditis elegans. Affinity measurements show that this distal cAMP binding domain (the A-site) binds cAMP with much lower affinity than the cAMP binding domain proximal to the catalytic domain (the B-site), which is present in both Epac1 and Epac2. Deletion mutant analysis shows that the high affinity cAMP binding domains are sufficient to regulate the GEFs in vitro. Interestingly, isolated fragments containing the B-sites of either Epac1 or Epac2, but not the A-site from Epac2, inhibit the catalytic domains in trans. This inhibition is relieved by the addition of cAMP. In addition to the cAMP binding domains, both Epac1 and Epac2 have a DEP domain. Deletion of this domain does not affect regulation of Epac1 activity but affects membrane localization. From these results, we conclude that all three members of the Epac family regulate both Rap1 and Rap2. Furthermore, we conclude that the catalytic activity of Epac1 is constrained by a direct interaction between GEF and high affinity cAMP binding domains in the absence of cAMP. Epac1 becomes activated by a release of this inhibition when cAMP is bound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号