首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbon mitigation by the energy crop, Miscanthus   总被引:2,自引:0,他引:2  
Biomass crops mitigate carbon emissions by both fossil fuel substitution and sequestration of carbon in the soil. We grew Miscanthus x giganteus for 16 years at a site in southern Ireland to (i) compare methods of propagation, (ii) compare response to fertilizer application and quantify nutrient offtakes, (iii) measure long-term annual biomass yields, (iv) estimate carbon sequestration to the soil and (v) quantify the carbon mitigation by the crop. There was no significant difference in the yield between plants established from rhizome cuttings or by micro-propagation. Annual off-takes of N and P were easily met by soil reserves, but soil K reserves were low in unfertilized plots. Potassium deficiency was associated with lower harvestable yield. Yields increased for 5 years following establishment but after 10 years showed some decline which could not be accounted for by the climate driven growth model MISCANMOD. Measured yields were normalized to estimate both autumn (at first frost) and spring harvests (15 March of the subsequent year). Average autumn and spring yields over the 15 harvest years were 13.4±1.1 and 9.0±0.7 t DW ha−1 yr−1 respectively. Below ground biomass in February 2002 was 20.6±4.6 t DW ha−1. Miscanthus derived soil organic carbon sequestration detected by a change in 13C signal was 8.9±2.4 t C ha−1 over 15 years. We estimate total carbon mitigation by this crop over 15 years ranged from 5.2 to 7.2 t C ha−1 yr−1 depending on the harvest time.  相似文献   

2.
Changes in soil organic carbon under biofuel crops   总被引:1,自引:0,他引:1  
One potentially significant impact of growing biofuel crops will be the sequestration or release of carbon (C) in soil. Soil organic carbon (SOC) represents an important C sink in the lifecycle C balances of biofuels and strongly influences soil quality. We assembled and analyzed published estimates of SOC change following conversion of natural or agricultural land to biofuel crops of corn with residue harvest, sugarcane, Miscanthus x giganteus , switchgrass, or restored prairie. We estimated SOC losses associated with land conversion and rates of change in SOC over time by regressing net change in SOC relative to a control against age since establishment year. Conversion of uncultivated land to biofuel agriculture resulted in significant SOC losses – an effect that was most pronounced when native land was converted to sugarcane agriculture. Corn residue harvest (at 25–100% removal) consistently resulted in SOC losses averaging 3–8 Mg ha−1 in the top 30 cm, whereas SOC accumulated under all four perennial grasses, with SOC accumulation rates averaging <1 Mg ha−1 yr−1 in the top 30 cm. More intensive harvests led to decreased C gains or increased C losses – an effect that was particularly clear for residue harvest in corn. Direct or indirect conversion of previously uncultivated land for biofuel agriculture will result in SOC losses that counteract the benefits of fossil fuel displacement. Additionally, SOC losses under corn residue harvest imply that its potential to offset C emissions may be overestimated, whereas SOC sequestration under perennial grasses represents an additional benefit that has rarely been accounted for in life cycle analyses of biofuels.  相似文献   

3.
There is a tradeoff to consider when harvesting perennial biomass crops: harvest too late and yield declines, harvest too early and risk higher mineral contents, particularly nitrogen (N). Allowing the crop to completely senesce and recycle nutrients has several advantages, including improved feedstock quality and reduced fertilizer requirements, but it comes at a risk, particularly in temperate climates where snow and ice can reduce or destroy harvestable biomass. The effect of harvest time on the N concentration ([N]) and biomass of Panicum virgatum and Miscanthus × giganteus was evaluated at three sites in Illinois over two years. In both species [N] of standing biomass significantly declined with time ( P <0.0001). Interestingly, there was no significant interaction effect of species and sample date on [N] ( P =0.2888), but there was a highly significant interaction effect on the total N in standing biomass ( P <0.0001). The amount of standing N was directly related to biomass yield. Seasonal changes in standing N differed among locations, suggesting that harvest time recommendations for N management depend on location. P. virgatum would have potentially removed as much as 187 kg N ha−1 if harvested green, and as little as 5 kg N ha−1 if harvested in late winter. Because of higher biomass yields, M . × giganteus standing N ranged from 379 kg N ha−1 in June to <17 kg N ha−1 in February. Importantly, there was little overall change in [N] between an early winter (December) harvest and a late winter (February/March) harvest, indicating the benefits of N cycling in the system can be realized by end of the growing season and thus, at least from an N economy perspective, there is no reason to risk yield losses by delaying harvest over the winter.  相似文献   

4.
Abstract:  In laboratory bioassays, the efficacy of the entomopathogenic fungus Beauveria bassiana against the spruce bark beetle, Ips typographus , was tested under various conditions. Four of the tested isolates and the commercial product Boverol® caused 99–100% mortality when tested at a concentration of 1.0 × 107 conidia/ml at 25°C. Using B. bassiana isolate 138 at a concentration of 1.0 × 106, the median survival time (MST) was 6.1 d and significantly longer compared with the MST of 4.2 and 4.0 d at 1.0 × 107 and 1.0 × 108 conidia/ml, respectively. In the next experiment, the beetles were maintained on spruce bark, filter paper or artificial diet during the bioassay with Boverol®, and significant differences in the MST of 3.6, 2.5 and 5.3 d, respectively, were noticed. The experiment with Boverol® at different temperatures showed that the beetles lived significantly longer at 15°C (MST 8.7 d) than at 20, 25, 30 and 35°C. At 25°C, the beetles died most rapidly (MST 3.5 d). At different relative humidities (RH) of 40, 70 and 100%, nearly all beetles were dead after treatment with a suspension of Boverol® at 1.0 × 107 conidia/ml. At 40% RH, 49% of the untreated beetles died after 7 d. The best effects were achieved with the following bioassay: beetles were fed for three days on artificial diet, then dipped into a solution of 1.0 × 107 conidia/ml and transferred on a piece of spruce bark in Petri dishes at 25°C and 70% RH.  相似文献   

5.
Aims:  Concentration of pathogens diluted in large volumes of water is necessary for their detection. An automated concentration system placed online in drinking water distribution systems would facilitate detection and mitigate the risk to public health.
Methods and Results:  A prototype concentrator based on dead-end hollow fibre ultrafiltration was used to concentrate Bacillus atrophaeus spores directly from tap water. Backflush was used to recover accumulated particulates for analysis. In field tests conducted on a water utility distribution system, 3·2 × 104–1·4 × 106 CFU ml−1 (6·1 × 106–3·0 × 108 CFU) were recovered from the filter when 2·9 × 107–1·0 × 109 CFU were spiked into the system. Per cent recovery ranged from 21% to 68% for flow volumes of 15–21 l. Tests using spore influent levels <10 CFU l−1 (spike < 1000 CFU) yielded 23–40% recovery for volumes >100 l.
Conclusions:  B. atrophaeus spores at levels <10 CFU l−1 were concentrated directly from tap water using an automated dead-end hollow-fibre ultrafiltration system.
Significance and Impact of the Study:  The prototype concentrator represents a critical step towards an autonomous system that could be installed in drinking water distribution lines or other critical water lines to facilitate monitoring. Recovered samples can be analysed using standard or rapid biosensor methods.  相似文献   

6.
In this work, a protocol for zoospores production of Phytophthora cryptogea , an economically important plant pathogen was optimized. Five different concentrations of zoospores (5 × 105, 5 × 104, 5 × 103, 5 × 102, 5 × 101 zoospores/ml) from four different isolates of P. cryptogea (Maria 1, Maria 2, S3 1-A, Amazzone) were used as inoculum on pot marigold ( Calendula officinalis ) and gerbera ( Gerbera jamesonii ) plants. Maria 1 was the most virulent isolate both on pot marigold and gerbera plants according to disease severity. A rapid and sensitive pathogen DNA extraction protocol suitable for large quantities of plant samples was adopted. Conventional polymerase chain reaction (PCR) was able to detect the pathogen in artificially inoculated symptomless pot marigold (collected day 12) and gerbera plants (day 8) after pathogen inoculation, with the suspension of 5 × 105, 5 × 104, 5 × 103 P. cryptogea  zoospores/ml. Real-time PCR showed the possibility to detect the pathogen in artificially inoculated symptomless pot marigold (collected day 8) and gerbera plants (day 4) after pathogen inoculation, with the suspension of 5 × 105, 5 × 104 P. cryptogea  zoospores/ml. The first symptoms appeared on pot marigold plants 14 days after pathogen inoculation and on gerbera plants 10 days after inoculation. Real-time PCR showed the possibility to detect the pathogen 4 days before conventional PCR and 6 days before the appearance of disease symptoms both on pot marigold and gerbera plants.  相似文献   

7.
Aims:  To study the efficacy of the lytic phage φS1 in eliminating Pseudomonas fluorescens in the early stage of biofilm formation, using an in situ and real time methodology for cell quantification.
Methods and Results:  Cell adhesion and phage infection studies were carried out in a parallel plate flow chamber under laminar conditions. Cells were allowed to adhere until reaching 1·7–1·8 × 106 cells cm−2 and phage infection was performed with two different phage concentrations (2 × 109 PFU ml−1 and 1 × 1010 PFU ml−1). Phage concentration clearly affects the speed of infection. The less concentrated phage solution promoted a three times slower rate of cell removal but did not affect the overall percentage of cell removal. In fact, after a longer infection period the less concentrated phage solution reached the same 93% cell removal value.
Conclusions:  Phages are efficient in the eradication of bacterial cells at the early stage of biofilm formation and their presence at the surface did not allow bacterial recolonization of the surface.
Significance and Impact of the Study:  To date, no published studies have been made concerning in situ and real time quantification of cell removal from surfaces due to phage action.  相似文献   

8.
Seasonally dry tropical forests (SDTF) are a widely distributed vegetation type in the tropics, characterized by seasonal rainfall with several months of drought when they are subject to fire. This study is one of the first attempts to quantify above- and belowground biomass (AGB and BGB) and above- and belowground carbon (AGC and BGC) pools to calculate their recovery after fire, using a chronosequence approach (six forests that ranged form 1 to 29 years after fire and mature forest). We quantified AGB and AGC pools of trees, lianas, palms, and seedlings, and BGB and BGC pools (Oi, Oe, Oa soil horizons, and fine roots). Total AGC ranged from 0.05 to nearly 72 Mg C ha−1, BGC from 21.6 to nearly 85 Mg C ha−1, and total ecosystem carbon from 21.7 to 153.5 Mg C ha−1; all these pools increased with forest age. Nearly 50% of the total ecosystem carbon was stored in the Oa horizon of mature forests, and up to 90% was stored in the Oa-horizon of early successional SDTF stands. The soils were shallow with a depth of <20 cm at the study site. To recover values similar to mature forests, BGC and BGB required <19 years with accumulation rates greater than 20 Mg C ha−1 yr−1, while AGB required 80 years with accumulation rates nearly 2.5 Mg C ha−1 yr−1. Total ecosystem biomass and carbon required 70 and 50 years, respectively, to recover values similar to mature forests. When belowground pools are not included in the calculation of total ecosystem biomass or carbon recovery, we estimated an overestimation of 10 and 30 years, respectively.  相似文献   

9.
C4 perennial grasses are being considered for bioenergy because of their high productivity and low inputs. In side-by-side replicated trials, Miscanthus ( Miscanthus x giganteus ) has previously been found more than twice as productive as switchgrass ( Panicum virgatum ). The hypothesis that this difference is attributable to higher leaf photosynthetic rates was tested on established plots of switchgrass and Miscanthus in central Illinois with >3300 individual measurements on 20 dates across the 2005 and 2006 growing seasons. Seasonally integrated leaf-level photosynthesis was 33% higher in Miscanthus than switchgrass ( P  < 0.0001). This increase in carbon assimilation comes at the expense of additional transpiration since stomatal conductance was on average 25% higher in Miscanthus ( P  < 0.0001). Whole-chain electron transport rate, measured simultaneously by modulated chlorophyll fluorescence, was similarly 23% higher in Miscanthus ( P  < 0.0001). Efficiencies of light energy transduction into whole chain photosynthetic electron transport, leaf nitrogen use and leaf water use were all significantly higher in Miscanthus. These may all contribute to its higher photosynthetic rates, and in turn, productivity. Systematic measurement of photosynthesis over two complete growing seasons in the field provides a unique dataset explaining why the productivity of these two species differs and for validating mechanistic production models for these emerging bioenergy crops.  相似文献   

10.
European field experiments have demonstrated Miscanthus can produce some of the highest energy yields per hectare of all potential energy crops. Previous modelling studies using MISCANMOD have calculated the potential energy yield for the EU27 from mean historical climate data (1960–1990). In this paper, we have built on the previous studies by further developing a new Miscanthus crop growth model MISCANFOR in order to analyse (i) interannual variation in yields for past and future climates, (ii) genotype-specific parameters on yield in Europe. Under recent climatic conditions (1960–1990) we show that 10% of arable land could produce 1709 PJ and mitigate 30 Tg of carbon dioxide-carbon (CO2-C) equivalent greenhouse gasses (GHGs) compared with EU27 primary energy consumption of 65 598 PJ, emitting 1048 Tg of CO2-C equivalent GHGs in 2005. If we continue to use the clone Miscanthus × giganteus , MISCANFOR shows that, as climate change reduces in-season water availability, energy production and carbon mitigation could fall 80% by 2080 for the Intergovernmental Panel on Climate Change A2 scenario. However, because Miscanthus is found in a huge range of climates in Asia, we propose that new hybrids will incorporate genes conferring superior drought and frost tolerance. Using parameters from characterized germplasm, we calculate energy production could increase from present levels by 88% (to 2360 PJ) and mitigate 42 Tg of CO2-C equivalent using 10% arable land for the 2080 mid-range A2 scenario. This is equivalent to 3.6% of 2005 EU27 primary energy consumption and 4.0% of total CO2 equivalent C GHG emissions.  相似文献   

11.
Longidorid plant pathogens, specifically Longidorus and Xiphinema , are known to reduce the biomass and seed yields of several monocotyledonous host plants and may serve as vectors for certain plant viruses. The occurrence and densities of species in these genera in the Midwestern United States may be of concern in the production of two biofuel plant species – Miscanthus ( Miscanthus × giganteus ) and Panicum virgatum . Here we present results from a morphological and molecular survey of plant parasitic nematodes in which two species of Xiphinema ( X. americanum and X. rivesi ) and one species of Longidorus ( L. breviannulatus ) were detected. A total of 73 soil samples were collected from 19 sites (nine Miscanthus and 10 P. virgatum ) in three states during 2008. Xiphinema spp. was found in 36% of the Miscanthus plots and in 26% of the P. virgatum plots with a population density range of 22–857/100 cm3 soil. L. breviannulatus was detected in association with Miscanthus plot in Havana, IL, in large numbers (54/100 cm3 soil). The occurrence of this species was associated with severe damage to the fibrous root system, including stunting and necrosis. Short notes, measurements, illustrations and molecular data are given to the species level.  相似文献   

12.
SUMMARY 1. Temporary ponds are inhabited by a variety of invertebrates, of which anostracans are an important group. We studied the lifetables of male and female anostracan Streptocephalus mackini at 3 algal concentrations (0.5 × 106, 1.0 × 106 and 1.5 × 106 cells mL−1).
2. Regardless of sex, S. mackini showed better survivorship at lower food levels. The longest average lifespan observed was 85 ± 2 days for males fed Chlorella at 0.5 × 106 cells mL−1.
3. Both net reproductive rate and generation time decreased with increasing food level. The highest net reproductive rate was about 120 cysts per female. The longest generation time of about 40 days, observed at 0.5 × 106 cells mL−1, was more than three times that at 1.5 × 106 cells mL−1.
4. The rate of population increase ( r ) was nearly the same (0.31 ± 0.06) at high (1.5 × 106 cells mL−1) and intermediate (1.0 × 106 cells mL−1) food levels. The r -value at low food level (0.5 × 106 cells mL−1 of Chlorella ) was 0.20 ± 0.01 per day.  相似文献   

13.
Membrane-bound [NiFe]-hydrogenase from Hydrogenophaga sp. AH-24 was purified to homogeneity. The molecular weight was estimated as 100±10 kDa, consisting of two different subunits (62 and 37 kDa). The optimal pH values for H2 oxidation and evolution were 8.0 and 4.0, respectively, and the activity ratio (H2 oxidation/H2 evolution) was 1.61 × 102 at pH 7.0. The optimal temperature was 75 °C. The enzyme was quite stable under air atmosphere (the half-life of activity was c . 48 h at 4 °C), which should be important to function in the aerobic habitat of the strain. The enzyme showed high thermal stability under anaerobic conditions, which retained full activity for over 5 h at 50 °C. The activity increased up to 2.5-fold during incubation at 50 °C under H2. Using methylene blue as an electron acceptor, the kinetic constants of the purified membrane-bound homogenase (MBH) were V max=336 U mg−1, k cat=560 s−1, and k cat/ K m=2.24 × 107 M−1 s−1. The MBH exhibited prominent electron paramagnetic resonance signals originating from [3Fe–4S]+ and [4Fe–4S]+ clusters. On the other hand, signals originating from Ni of the active center were very weak, as observed in other oxygen-stable hydrogenases from aerobic H2-oxidizing bacteria. This is the first report of catalytic and biochemical characterization of the respiratory MBH from Hydrogenophaga .  相似文献   

14.
Abstract: The feeding of the marine ciliate Euplotes mutabilis was studied using bacteria ( Vibrio natriegens ) doubly labelled with 3H-thymidine and 14C-leucine. In the presence of abundant bacteria (30 × 106 bacteria ml−1), an average Euplotes cell (initially without food vacuoles) with a protein content of 12 ng consumed 16 × 103 bacteria in the first hour and 27 × 103 bacteria over four hours, accumulating about 60% of the bacterial protein into ciliate macromolecules. Euplotes which had been starved or under-fed to reduce cell protein biomass to 7 or 9 ng consumed significantly fewer bacteria, but the gross growth efficiency for protein did not change. The rate of consumption of bacteria by large Euplotes of protein content 15 ng was initially less than that of 12 ng cells, and it decreased markedly before the end of a 4-hour experiment. Recently divided cells ingested bacteria rapidly, but showed a reduced gross growth efficiency of about 40%. At low bacterial concentrations (6 × 106 bacteria ml−1) the rates of ingestion were markedly reduced to between     and     of maximal levels; the smallest cells could not sustain feeding activity at the low prey concentration and gross growth efficiency fell from 43 to 20% during a 4-hour experiment. The strategy adopted by Euplotes in response to local fluctuations in food supply involves rapid consumption with high growth efficiency in times of plenty, but slow shrinkage without cell division to survive in times of shortage.  相似文献   

15.
River flow and fish abundance in a South African estuary   总被引:3,自引:0,他引:3  
The ichthyofauna of the Thukela Estuary, a small (55 ha), shallow (<1·5 m) system on the KwaZulu-Natal coast (mean annual river runoff of 3865 × 106 m3, from a large catchment of 29 000 km2, is seasonal: peak inputs occurring between November and March), was dominated by the juveniles of marine taxa that used the estuary as a nursery area. A striking feature of the above community was the decline in fish abundance with increasing river input, with flow values >100 m3 s−1 leading to increased loss of species from the system. This decline was linked to the lack of saline intrusion into the estuary and increased freshwater flooding through the system.  相似文献   

16.
Holocene carbon burial by lakes in SW Greenland   总被引:3,自引:0,他引:3  
The role of the Arctic in future global change processes is predicted to be important because of the large carbon (C) stocks contained in frozen soils and peatlands. Lakes are an important component of arctic landscapes although their role in storing C is not well prescribed. The area around Kangerlussuaq, SW Greenland (66–68°N, 49–54°W) has extremely high lake density, with ∼20 000 lakes that cover about 14% of the land area. C accumulation rates and standing stock (kg C m−2), representing late- to mid-Holocene C burial, were calculated from AMS 14C-dated sediment cores from 11 lakes. Lake ages range from ∼10 000 cal yr  bp to ∼5400 cal yr  bp , and reflect the withdrawal of the ice sheet from west to east. Total standing stock of C accumulated in the studied lakes for the last ∼8000 years ranged from 28 to 71 kg C m−2, (mean: ∼42 kg C m−2). These standing stock determinations yield organic C accumulation rates of 3.5–11.5 g C m−2 yr−1 (mean: ∼6 g C m−2 yr−1) for the last 4500 years. Mean C accumulation rates are not different for the periods 8–4.5 and 4.5–0 ka, despite cooling trends associated with the neoglacial period after 4.5 ka. We used the mean C standing stock to estimate the total C pool in small lakes (<100 ha) of the Kangerlussuaq region to be ∼4.9 × 1013 g C. This C stock is about half of that estimated for the soil pool in this region (but in 5% of the land area) and indicates the importance of incorporating lakes into models of regional C balance at high latitudes.  相似文献   

17.
Abstract:  The bioactivities of destruxins (dtx), depsipeptides isolated from Metarhizium anisopliae , against Spodoptera litura were tested in laboratory. For contacting toxicities, dtx-E was more effective than dtx-A and dtx-B. The LC50s values of dtx-A, B and E were 197.98, 292.00 and 113.99 mg/l at 48 h after treatment, while the LT50s were 42.65, 59.45 and 23.68 h at 300 mg/l. In the experiment of antifeedant activity, dtx-A, dtx-B and dtx-E at five concentrations (200, 100, 50, 25 and 12.5 mg/l) were bioassayed. Destruxins in a dose-dependent manner gave an apparent antifeedant activity. Generally, dtx-A, over dtx-B and dtx-E had the significant (P < 0.05) larger choice and no-choice antifeedant indexes (CAIs and NCAIs). At the concentration of 200 mg/l, the CAIs or NCAIs of dtx-A, dtx-B and dtx-E were 96.78, 84.93 and 85.90 or 89.75, 62.42 and 72.28 respectively. Furthermore, the synergistic activity of crude destruxin (CD) for pathogenicity of Paecilomyces javanicus strain Pj01 was detected. The LC50s values of single Pj01 and the mixtures of Pj01 plus CD at 100 or 200 mg/l (Pj01-CD100 or Pj01-CD200) were respectively 474.63 × 105, and 197.45 × 105 or 113.11 × 105 spores/ml at the fifth day after treated. Meanwhile, Pj01, Pj01-CD100 and Pj01-CD200 gave the LT50s values of 6.99 day, 5.49 day and 4.21 day at 100 × 105 spores/ml. Clearly, dtx decreased the values of LC50 and LT50 of the strain Pj01.  相似文献   

18.
Biomass based bioenergy is promoted as a major sustainable energy source which can simultaneously decrease net greenhouse gas emissions. Miscanthus × giganteus ( M. × giganteus ), a C4 perennial grass with high nitrogen, water, and light use efficiencies, is regarded as a promising energy crop for biomass production. Mathematical models which can accurately predict M. × giganteus biomass production potential under different conditions are critical to evaluate the feasibility of its production in different environments. Although previous models based on light-conversion efficiency have been shown to provide good predictions of yield, they cannot easily be used in assessing the value of physiological trait improvement or ecosystem processes. Here, we described in detail the physical and physiological processes of a previously published generic mechanistic eco-physiological model, WIMOVAC, adapted and parameterized for M. × giganteus . Parameterized for one location in England, the model was able to realistically predict daily field diurnal photosynthesis and seasonal biomass at a range of other sites from European studies. The model provides a framework that will allow incorporation of further mechanistic information as it is developed for this new crop.  相似文献   

19.
Miscanthus , a perennial rhizomatous C4 grass, is a potential biomass crop in Europe, mainly because of its high yield potential and low demand for inputs. However, until recently only a single clone, M. × giganteus , was available for the extensive field trials performed across Europe and this showed poor overwintering in the first year after planting at some locations in Northern Europe. Therefore, field trials with five Miscanthus genotypes, including two acquisitions of Miscanthus × giganteus , one of M. sacchariflorus and two hybrids of M. sinensis were planted in early summer 1997 at four sites, in Sweden, Denmark, England and Germany. The field trials showed that better overwintering of newly established plants at a site was not apparently connected with size or early senescence. An artificial freezing test with rhizomes removed from the field in January 1998 showed that the lethal temperature at which 50% were killed (LT50) for M. × giganteus and M. sacchariflorus genotypes was −3.4 °C. However, LT50 in one of the M. sinensis hybrid genotypes tested was −6.5 °C and this genotype had the highest survival rates in the field in Sweden and Denmark. Although the carbohydrate content of rhizomes, osmotic potential of cell sap and mineral composition were not found to explain differences in frost tolerance adequately, moisture contents correlated with frost hardiness (LT50) in most cases. The results obtained form a basis for identifying suitable Miscanthus genotypes for biomass production in the differing climatic regions of Europe.  相似文献   

20.
Changes in species composition, stem abundance, and basal area of trees taller than or equal to 10 m in a medium altitude tropical rain forest at the Ngogo study area, Kibale National Park, Uganda are described for the period between 1975 and 1998 ( n  = 23 years). Two enumeration episodes were conducted in 263 plots of 5 m by 50 m during 1975–80 and 1997–98. During this period, species richness decreased by 3% (from 92 to 89). Species diversity (H') also declined slightly from 2.97 to 2.86. The number of trees recorded in the sample plots decreased by 8% (from 2545 to 2329), while basal area decreased from 49.48 m2 ha−1 to 48.68 m2 ha−1. However, stem abundance and basal area increased for some species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号