首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiation and survival defects of human immunodeficiency virus (HIV)-specific CD8(+) T cells may contribute to the failure of HIV-specific CD8(+) T cells to control HIV replication. It is not known, however, whether simian immunodeficiency virus (SIV)-infected rhesus macaques show comparable defects in these virus-specific CD8(+) T cells or when such defects are established during infection. Peripheral blood cells from acutely and chronically infected rhesus macaques were stained ex vivo for memory subpopulations and examined by in vitro assays for apoptosis sensitivity. We show here that SIV-specific CD8(+) T cells from chronically SIV infected rhesus macaques show defects comparable to those observed in HIV infection, namely, a skewed CD45RA(-) CD62L(-) effector memory phenotype, reduced Bcl-2 levels, and increased levels of spontaneous and CD95-induced apoptosis of SIV-specific CD8(+) T cells. Longitudinal studies showed that the survival defects and phenotype are established early in the first few weeks of SIV infection. Most importantly, they appear to be antigen driven, since most probably the loss of epitope recognition due to viral escape results in the reversal of the phenotype and reduced apoptosis sensitivity, something we observed also for animals treated with antiretroviral therapy. These findings further support the use of SIV-infected rhesus macaques to investigate the phenotypic changes and apoptotic defects of HIV-specific CD8(+) T cells and indicate that such defects of HIV-specific CD8(+) T cells are the result of chronic antigen stimulation.  相似文献   

2.
CD4+ T-cell help enables antiviral CD8+ T cells to differentiate into fully competent memory cells and sustains CD8+ T-cell-mediated immunity during persistent virus infection. We recently reported that mice of C57BL/6 and C3H strains differ in their dependence on CD28 and CD40L costimulation for long-term control of infection by polyoma virus, a persistent mouse pathogen. In this study, we asked whether mice of these inbred strains also vary in their requirement for CD4+ T-cell help for generating and maintaining polyoma virus-specific CD8+ T cells. CD4+ T-cell-depleted C57BL/6 mice mounted a robust antiviral CD8+ T-cell response during acute infection, whereas unhelped CD8+ T-cell effectors in C3H mice were functionally impaired during acute infection and failed to expand upon antigenic challenge during persistent infection. Using (C57BL/6 × C3H)F1 mice, we found that the dispensability for CD4+ T-cell help for the H-2b-restricted polyoma virus-specific CD8+ T-cell response during acute infection extends to the H-2k-restricted antiviral CD8+ T cells. Our findings demonstrate that dependence on CD4+ T-cell help for antiviral CD8+ T-cell effector differentiation can vary among allogeneic strains of inbred mice.  相似文献   

3.
Distinct functional CD8+ T-cell populations have been observed during human immunodeficiency virus (HIV) infection. One of these functions is the inhibition of viral replication by a noncytotoxic mechanism, which was shown to be mediated by the CD8+CD28+ subpopulation. On the other hand, CD8+ T cells exert an HIV-specific cytotoxic activity. The present study shows that CD8+CD28- lymphocytes display this HIV-specific cytotoxic activity, which is detectable immediately after the cells are purified from peripheral blood. The CD28- population is also able to proliferate and to retain its cytotoxic activity after in vitro restimulation with autologous blast cells. Finally, HIV-specific cytotoxic T cells can be obtained in vitro from the CD8+CD28+ population.  相似文献   

4.
Breast-feeding infants of human immunodeficiency virus (HIV)-infected women ingest large amounts of HIV, but most escape infection. While the factors affecting transmission risk are poorly understood, HIV-specific cytotoxic T-lymphocyte (CTL) responses play a critical role in controlling HIV levels in blood. We therefore investigated the ability of breast milk cells (BMC) from HIV-infected women from the United States and Zambia to respond to HIV-1 peptides in a gamma interferon enzyme-linked immunospot assay. All (n = 11) HIV-infected women had responses to pools of Gag peptide (range, 105 to 1,400 spot-forming cells/million; mean = 718), 8 of 11 reacted to Pol, 7 reacted to Nef, and 2 of 5 reacted to Env. Conversely, of four HIV-negative women, none responded to any of the tested HIV peptide pools. Depletion and tetramer staining studies demonstrated that CD8(+) T cells mediated these responses, and a chromium-release assay showed that these BMC were capable of lysing target cells in an HIV-specific manner. These data demonstrate the presence of HIV-specific major histocompatibility complex class I-restricted CD8(+) CTLs in breast milk. Their presence suggests a role in limiting transmission and provides a rationale for vaccine strategies to enhance these responses.  相似文献   

5.
Although human immunodeficiency virus (HIV)-infected subjects without AIDS have a high frequency of HIV-specific CD8 T lymphocytes, cellular immunity is unable to control infection. Freshly isolated lymphocytes often do not lyse HIV-infected targets in 4-h cytotoxicity assays. A large fraction of circulating CD8 T cells from HIV-infected donors down-modulate CD3zeta, the signaling component of the T-cell receptor complex, which is reexpressed in vitro coincident with the return of cytotoxic function. To investigate further the link between CD3zeta down-modulation and possible CD8 T-cell functional defects, we used flow cytometry to characterize further the properties of the CD3zeta-down-modulated subset. HIV-specific CD8 T cells, identified by tetramer staining, are CD3zeta(-). CD8 T cells with down-modulated CD3zeta also do not express the key costimulatory receptor CD28 and have the cell surface phenotype of activated or memory T cells (HLA-DR(+) CD62L(-)). After T-cell activation, CD3zeta-down-modulated cells express the activation marker CD69 but not the high-affinity interleukin 2 (IL-2) receptor alpha-chain CD25 and produce gamma interferon but not IL-2. Therefore HIV-specific CD8 T cells have down-modulated key signaling molecules for T-cell activation and costimulation and require exogenous cytokine stimulation. The typical impairment of HIV-specific CD4 T helper cells, which would normally provide specific CD8 T-cell stimulation, means that in vivo CTL function in vivo is compromised in most HIV-infected individuals. In AIDS patients, the functional defect is more severe, since CD3zeta is not reexpressed even after IL-2 exposure.  相似文献   

6.
T-cell receptors (TCRs) govern the specificity, efficacy, and cross-reactivity of CD8 T cells. Here, we studied CD8 T-cell clonotypes from Mane-A*10(+) pigtail macaques responding to the simian immunodeficiency virus (SIV) Gag KP9 epitope in a setting of vaccination and subsequent viral challenge. We observed a diverse TCR repertoire after DNA, recombinant poxvirus, and live attenuated virus vaccination, with none of 59 vaccine-induced KP9-specific TCRs being identical between macaques. The KP9-specific TCR repertoires remained diverse after SIV or simian-human immunodeficiency virus challenge but, remarkably, exhibited substantially different clonotypic compositions compared to the corresponding populations prechallenge. Within serial samples from individual pigtail macaques, only a small subset (33.9%) of TCRs induced by vaccination were maintained or expanded after challenge. Most (66.1%) of the TCRs induced by vaccination were not detectable after challenge. Our results suggest that some CD8 T cells induced by vaccination are more efficient than others at responding to a viral challenge. These findings have implications for future AIDS virus vaccine studies, which should consider the "fitness" of vaccine-induced T cells in order to generate robust responses in the face of virus exposure.  相似文献   

7.
To assess the possible role of cytotoxic T lymphocytes (CTLs) in containing the spread of human immunodeficiency virus in acutely infected individuals, the temporal evolution of the virus-specific CD8+ lymphocyte response was defined in simian immunodeficiency virus of macaques (SIVmac)-infected rhesus monkeys. A brief period of SIVmac plasma antigenemia was seen 9 to 16 days following intravenous infection with SIVmac, ending as the absolute number of CD8+ peripheral blood lymphocytes (PBLs) increased. In a prospective assessment of the ability of CD8+ lymphocytes of these monkeys to suppress SIVmac replication in autologous PBLs, inhibitory activity was detected as early as 4 days, with a more pronounced effect 12 to 16 days following infection. SIVmac Gag- and Nef-specific CD8+ effector cell activities were demonstrable in PBLs of animals by 2 weeks following virus inoculation. In fact, SIVmac-specific CTL precursors were documented in the PBLs of rhesus monkeys 4 to 6 days after SIVmac infection. These studies indicate that AIDS virus-specific CD8+ CTLs are present in PBLs within days of infection and may play an important role in containing the early spread of virus.  相似文献   

8.
Antiviral CD8(+) T cells are thought to play a significant role in limiting the viremia of human and simian immunodeficiency virus (HIV and SIV, respectively) infections. However, it has not been possible to measure the in vivo effectiveness of cytotoxic T cells (CTLs), and hence their contribution to the death rate of CD4(+) T cells is unknown. Here, we estimated the ability of a prototypic antigen-specific CTL response against a well-characterized epitope to recognize and kill infected target cells by monitoring the immunodominant Mamu-A*01-restricted Tat SL8 epitope for escape from Tat-specific CTLs in SIVmac239-infected macaques. Fitting a mathematical model that incorporates the temporal kinetics of specific CTLs to the frequency of Tat SL8 escape mutants during acute SIV infection allowed us to estimate the in vivo killing rate constant per Tat SL8-specific CTL. Using this unique data set, we show that at least during acute SIV infection, certain antiviral CD8(+) T cells can have a significant impact on shortening the longevity of infected CD4(+) T cells and hence on suppressing virus replication. Unfortunately, due to viral escape from immune pressure and a dependency of the effectiveness of antiviral CD8(+) T-cell responses on the availability of sufficient CD4(+) T cells, the impressive early potency of the CTL response may wane in the transition to the chronic stage of the infection.  相似文献   

9.
Seasonal influenza virus infection is a leading cause of illness and mortality in young children and the elderly each year. Current influenza vaccines generate protective antibody responses; however, these must be given annually to provide protection against serologically distinct viruses. By contrast, CD8(+) T cells are capable of recognizing conserved antigenic determinants within the influenza virion and, as such, may provide protection against a number of variant strains of the virus. CD8(+) T cells play a critical key role in controlling and resolving influenza virus infections via the production of cytokines and cytolytic mediators. This article focuses on the induction of the influenza-specific CD8(+) T-cell response and how these cells acquire and maintain effector function after induction. Moreover, we discuss how cytotoxic T-lymphocyte function correlates with protection following vaccination.  相似文献   

10.
There is a continuing search for better ways to use existing drugs against human immunodeficiency virus (HIV). One idea is to use short therapy interruptions to "autovaccinate" HIV-infected patients. A group of 13 chronically HIV-infected patients enrolled in a trial of such so-called structured treatment interruptions (STIs) were intensively studied with respect to their viral load (VL) and HIV-specific CD8+ T-cell (cytotoxic T-lymphocyte [CTL]) responses. We found that 10 of the 13 patients had plateau VLs after STIs that were lower than their pretreatment VLs. While viral rebound rates became lower over STIs, there were no changes in clearance rates. Although numbers of CTLs did increase over the same time that viral rebounds decreased, there was no correlation between CTL count and either viral rebound rates or clearance rates. Finally, we asked whether absolute numbers of or changes in numbers of CTLs predict plateau VLs after STIs. No measure of CTLs was able to predict plateau VLs. Thus, there was no signature in these data of an important contribution to virological control from HIV-specific CD8+ T lymphocytes.  相似文献   

11.
SEPTIN9 (SEPT9) is a filament-forming protein involved in numerous cellular processes. We have used a conditional knock out allele of Sept9 to specifically delete Sept9 in T-cells. As shown by fluorescence-activated cell sorting, loss of Sept9 at an early thymocyte stage in the thymus results in increased numbers of double-negative cells indicating that SEPT9 is involved in the transition from the double-negative stage during T-cell development. Accordingly, the relative numbers of mature T-cells in the periphery are decreased in mice with a T-cell-specific deletion of Sept9. Proliferation of Sept9-deleted CD8+ T-cells from the spleen is decreased upon stimulation in culture. The altered T-cell homeostasis caused by the loss of Sept9 results in an increase of CD8+ central memory T-cells.  相似文献   

12.
Several primate models indicate that cytotoxic T lymphocyte-inducing vaccines may be unable to prevent human immunodeficiency virus infection but may have a long-term benefit in controlling viral replication and delaying disease progression. Here we show that analysis of the kinetics of antigen-specific CD8+ T-cell expansion suggests a delay in activation following infection that allows unimpeded early viral replication. Viral kinetics do not differ between controls and vaccinees during this delay phase. An increase in virus-specific CD8+ T-cell numbers around day 10 postinfection coincides with a slowing in viral replication in vaccinees and reduces peak viral loads by around 1 log. However, this response is too little too late to prevent establishment of persistent infection.  相似文献   

13.
This brief review focuses on the way that our understanding of virus-specific CD8(+) T-cell-mediated immunity evolved, giving particular attention to the early impact of the program at the Australian National University. The story developed through a sequence of distinct eras, each of which can be defined in the context of the technologies available at that time. The progress has been enormous, but there is a great deal still to be learned. A particular challenge is to use what we know for human benefit.  相似文献   

14.
Human immunodeficiency virus (HIV) Nef is a membrane-associated protein decreasing surface expression of CD4, CD28, and major histocompatibility complex class I on infected cells. We report that Nef strongly down-modulates surface expression of the beta-chain of the CD8alphabeta receptor by accelerated endocytosis, while CD8 alpha-chain expression is less affected. By mutational analysis of the cytoplasmic tail of the CD8 beta-chain, an FMK amino acid motif was shown to be critical for Nef-induced endocytosis. Although independent of CD4, endocytosis of the CD8 beta-chain was abrogated by the same mutations in Nef that affect CD4 down-regulation, suggesting common molecular interactions. The ability to down-regulate the human CD8 beta-chain was conserved in HIV-1, HIV-2, and simian immunodeficiency virus SIVmac239 Nef and required an intact AP-2 complex. The Nef-mediated internalization of receptors, such as CD4, major histocompatibility complex class I, CD28, and CD8alphabeta, may contribute to the subversion of the host immune system and progression towards AIDS.  相似文献   

15.
Respiratory syncytial virus (RSV) is a major cause of morbidity from respiratory infection in infants, young children and the elderly. No effective vaccine against RSV is currently available and studies of the natural history of RSV infection suggest repeated infections with antigenically related virus strains are common throughout an individual's lifetime. We have studied the CD8+ T-cell response during experimental murine RSV infection and found that RSV inhibits the expression of effector activity by activated RSV-specific CD8+ T cells infiltrating the lung parenchyma and the development of pulmonary CD8+ T-cell memory by interfering with TCR-mediated signaling. These data suggest a possible mechanism to explain the limited duration of protective immunity in RSV infection.  相似文献   

16.
In some epitope-specific responses, T cells bearing identical TCRs occur in many MHC-matched individuals. The sharing of public TCRs is unexpected, given the enormous potential diversity of the TCR repertoire. We have previously studied the sharing of TCR beta-chains in the CD8(+) T cell responses to two influenza epitopes in mice. Analysis of these TCRbeta repertoires suggests that, even with unbiased V(D)J recombination mechanisms, some TCRbetas can be produced more frequently than others, by a process of convergent recombination. The TCRbeta production frequency was shown to be a good predictor of the observed sharing of epitope-specific TCRbetas between mice. However, this study was limited to immune responses in an inbred population. In this study, we investigated TCRbeta sharing in CD8(+) T cell responses specific for the immunodominant Mamu-A*01-restricted Tat-SL8/TL8 and Gag-CM9 epitopes of SIV in rhesus macaques. Multiple data sets were used, comprising a total of approximately 6000 TCRbetas sampled from 20 macaques. We observed a spectrum in the number of macaques sharing epitope-specific TCRbetas in this outbred population. This spectrum of TCRbeta sharing was negatively correlated with the minimum number of nucleotide additions required to produce the sequences and strongly positively correlated with the number of observed nucleotide sequences encoding the amino acid sequences. We also found that TCRbeta sharing was correlated with the number of times, and the variety of different ways, the sequences were produced in silico via random gene recombination. Thus, convergent recombination is a major determinant of the extent of TCRbeta sharing.  相似文献   

17.
In an attempt to determine why high frequencies of circulating virus-specific CD8+ T cells are unable to control human immunodeficiency virus and simian immunodeficiency virus (SIV) replication, we assessed the functional nature of SIV-specific CD8+ lymphocytes. After vaccination and early after infection, nearly all tetramer-staining CD8+ cells produced gamma interferon in response to their specific stimulus. However, by 4 months postinfection with pathogenic SIVmac239, signs of functional impairment in the CD8+ T-cell compartment were detected which might prevent these T cells from efficiently controlling the infection during the chronic phase.  相似文献   

18.
CD8(+) T lymphocytes appear to play a role in controlling human immunodeficiency virus (HIV) replication, yet routine immunological assays do not measure the antiviral efficacy of these cells. Furthermore, it has been suggested that CD8+ T cells that recognize epitopes derived from proteins expressed early in the viral replication cycle can be highly efficient. We used a functional in vitro assay to assess the abilities of different epitope-specific CD8+ T-cell lines to control simian immunodeficiency virus (SIV) replication. We compared the antiviral efficacies of 26 epitope-specific CD8+ T-cell lines directed against seven SIV epitopes in Tat, Nef, Gag, Env, and Vif that were restricted by either Mamu-A*01 or Mamu-A*02. Suppression of SIV replication varied depending on the epitope specificities of the CD8+ T cells and was unrelated to whether the targeted epitope was derived from an early or late viral protein. Tat(28-35)SL8- and Gag(181-189)CM9-specific CD8+ T-cell lines were consistently superior at suppressing viral replication compared to the other five SIV-specific CD8+ T-cell lines. We also investigated the impact of viral escape on antiviral efficacy by determining if Tat(28-35)SL8- and Gag(181-189)CM9-specific CD8+ T-cell lines could suppress the replication of an escaped virus. Viral escape abrogated the abilities of Tat(28-35)SL8- and Gag(181-189)CM9-specific CD8+ T cells to control viral replication. However, gamma interferon (IFN-gamma) enzyme-linked immunospot and IFN-gamma/tumor necrosis factor alpha intracellular-cytokine-staining assays detected cross-reactive immune responses against the Gag escape variant. Understanding antiviral efficacy and epitope variability, therefore, will be important in selecting candidate epitopes for an HIV vaccine.  相似文献   

19.
BACKGROUND: Interleukin-2 (IL-2) has been used successfully to increase CD4 cell counts in patients who are human immunodeficiency virus (HIV) positive. The mechanisms involved in this phenomenon are unknown. We hypothesized that a differential proliferation rate of CD4+ compared with CD8+ lymphocytes could be related to the increase of CD4 counts and of CD4/CD8 ratios that occur in HIV+ patients during IL-2 treatment. METHODS: We enrolled in our study 14 HIV+ patients treated with IL-2 or with highly active antiretroviral therapy (HAART) during a 96-week observation period. Using flow cytometry, we measured longitudinally the expression of the Ki67 antigen in peripheral blood CD4+ and CD8+ lymphocyte subsets. RESULTS: Compared with HAART alone, IL-2 produced a rapid increase of Ki67+ proliferating CD4 cells and a concomitant increase of the CD4/CD8 ratios, whereas the corresponding CD8 proliferation increased slightly. On the contrary, HAART alone was effective in suppressing equally both CD4 and CD8 proliferation. CONCLUSIONS: Our results suggest a selective activity of IL-2 on CD4 T-cell proliferation; on the contrary, CD8-specific proliferation is affected minimally during treatment. This information may offer the potential to plan correctly immune activating regimens.  相似文献   

20.
Although CD8+ T cells play an important role in controlling viral infections, boosting specific CD8+ T cells by prophylactic vaccination with simian immunodeficiency virus (SIV) epitopes fails to provide sterilizing immunity. Viral replication rates and viral contraction rates after the peak viremia hardly depend on the presence of memory CD8+ T cells. To study these paradoxical findings, we parameterize novel mathematical models for acute SIV and human immunodeficiency virus infection. These models explain that failure of vaccination is due to the fact that effector/target ratios are too low during the viral expansion phase. Because CD8+ T cells require cell-to-cell contacts, immune protection requires high effector/target ratios at the primary site of infection. Effector/target ratios become favorable for immune control at the time of the peak in the viral load when the virus becomes limited by other factors, such as the availability of uninfected target cells. At the viral set point, effector/target ratios are much higher, and perturbations of the number of CD8+ effector cells have a large impact on the viral load. Such protective effector/target ratios are difficult to achieve with nucleic acid- or protein-based vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号