首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Silencers, silencing, and heritable transcriptional states.   总被引:46,自引:1,他引:45       下载免费PDF全文
  相似文献   

4.
Analysis of Y-Linked Mutations to Male Sterility in DROSOPHILA MELANOGASTER   总被引:3,自引:2,他引:1  
Kennison JA 《Genetics》1983,103(2):219-234
Mating type in haploid cells of the yeast Saccharomyces cerevisiae is determined by a pair of alleles MATa and MAT alpha. Under various conditions haploid mating types can be interconverted. It has been proposed that transpositions of silent cassettes of mating-type information from HML OR HMR to MAT are the source of mating type conversions. A mutation described in this work, designated AON1, has the following properties. (1) MAT alpha cells carring AON1 are defective in mating. (2) AON1 allows MAT alpha/MAT alpha but not MATa/MATa diploids to sporulate; thus, AON1 mimics the MATa requirement for sporulation. (3) mata-1 cells that carry AON1 are MATa phenocopies, i.e., MAT alpha/mata-1 AON1 diploids behave as standard MAT alpha/MATa cells; therefore, AON1 suppresses the defect of mata-1. (4) AON1 maps at or near HMRa. (5) Same-site revertants from AON1 lose the ability to convert mating type to MATa, indicating that reversion is associated with the loss of a functional HMRa locus. In addition, AON1 is a dominant mutation. We conclude that AON1 is a regulatory mutation, probably cis-acting, that leads to the constitutive expression of silent a mating-type information located at HMRa.  相似文献   

5.
6.
Houston P  Simon PJ  Broach JR 《Genetics》2004,166(3):1187-1197
Haploid Saccharomyces can change mating type through HO-endonuclease cleavage of an expressor locus, MAT, followed by gene conversion using one of two repository loci, HML or HMR, as donor. The mating type of a cell dictates which repository locus is used as donor, with a cells using HML and alpha cells using HMR. This preference is established in part by RE, a locus on the left arm of chromosome III that activates the surrounding region, including HML, for recombination in a cells, an activity suppressed by alpha 2 protein in alpha cells. We have examined the ability of RE to stimulate different forms of interchromosomal recombination. We found that RE exerted an effect on interchromosomal mating-type switching and on intrachromosomal homologous recombination but not on interchromosomal homologous recombination. Also, even in the absence of RE, MAT alpha still influenced donor preference in interchromosomal mating-type switching, supporting a role of alpha 2 in donor preference independent of RE. These results suggest a model in which RE affects competition between productive and nonproductive recombination outcomes. In interchromosome gene conversion, RE enhances both productive and nonproductive pathways, whereas in intrachromosomal gene conversion and mating-type switching, RE enhances only the productive pathway.  相似文献   

7.
K. S. Weiler  J. R. Broach 《Genetics》1992,132(4):929-942
Mating type interconversion in homothallic strains of the yeast Saccharomyces cerevisiae results from directed transposition of a mating type allele from one of the two silent donor loci, HML and HMR, to the expressing locus, MAT. Cell type regulates the selection of the particular donor locus to be utilized during mating type interconversion: MATa cells preferentially select HML alpha and MAT alpha cells preferentially select HMRa. Such preferential selection indicates that the cell is able to distinguish between HML and HMR during mating type interconversion. Accordingly, we designed experiments to identify those features perceived by the cell to discriminate HML and HMR. We demonstrate that discrimination does not derive from the different structures of the HML and HMR loci, from the unique sequences flanking each donor locus nor from any of the DNA distal to the HM loci on chromosome III. Moreover, we find that the sequences flanking the MAT locus do not function in the preferential selection of one donor locus over the other. We propose that the positions of the donor loci on the left and right arms of chromosome III is the characteristic utilized by the cell to distinguish HML and HMR. This positional information is not generated by either CEN3 or the MAT locus, but probably derives from differences in the chromatin structure, chromosome folding or intranuclear localization of the two ends of chromosome III.  相似文献   

8.
Haber JE  George JP 《Genetics》1979,93(1):13-35
Studies of heterothallic and homothallic strains of Saccharomyces cerevisiae have led to the suggestion that mating-type information is located at three distinct sites on chromosome 3, although only information at the mating-type (MAT) locus is expressed (Hicks, Strathern and Herskowitz, 1977). We have found that the recessive mutation cmt permits expression of the normally silent copies of mating-type information at the HMa and HM alpha loci. In haploid strains carrying HMa and HM alpha, the cmt mutation allows the simultaneous expression of both a and alpha information, leading to a nonmating ("MATa/MAT alpha") phenotype. The effects of cmt can be masked by changing the mating-type information at HMa or HM alpha. For example, a cell of genotype MATa hma HM alpha cmt has an a mating type, while a MAT alpha hma HM alpha cmt strain is nonmating. Expression of mating-type information at the HM loci can correct the mating and sporulation defects of the mata* and mat alpha 10 alleles. Meiotic segregants recovered from cmt/cmt diploids carrying the mat mutations demonstrate that these mutants are not "healed" to normal MAT alleles, as is the case in parallel studies using the homothallism gene HO.--All of the results are consistent with the notion that the HMa and hm alpha alleles both code for alpha information, while HM alpha and hma both code for a information. The cmt mutation demonstrates that these normally silent copies of mating-type and sporulation information can be expressed and that the information at these loci is functionally equivalent to that found at MAT. The cmt mutation does not cause interconversions of mating-type alleles at MAT, and it is not genetically linked to MAT, HMa, HM alpha or HO. In cmt heterozygotes, cmt becomes homozygous at a frequency greater than 1% when the genotype at the MAT locus is mata*/MAT alpha or mat alpha 10/MATa.  相似文献   

9.
During homothallic switching of the mating-type (MAT) gene in Saccharomyces cerevisiae, a- or alpha-specific sequences are replaced by opposite mating-type sequences copied from one of two silent donor loci, HML alpha or HMRa. The two donors lie at opposite ends of chromosome III, approximately 190 and 90 kb, respectively, from MAT. MAT alpha cells preferentially recombine with HMR, while MATa cells select HML. The mechanisms of donor selection are different for the two mating types. MATa cells, deleted for the preferred HML gene, efficiently use HMR as a donor. However, in MAT alpha cells, HML is not an efficient donor when HMR is deleted; consequently, approximately one-third of HO HML alpha MAT alpha hmr delta cells die because they fail to repair the HO endonuclease-induced double-strand break at MAT. MAT alpha donor preference depends not on the sequence differences between HML and HMR or their surrounding regions but on their chromosomal locations. Cloned HMR donors placed at three other locations to the left of MAT, on either side of the centromere, all fail to act as efficient donors. When the donor is placed 37 kb to the left of MAT, its proximity overcomes normal donor preference, but this position is again inefficiently used when additional DNA is inserted in between the donor and MAT to increase the distance to 62 kb. Donors placed to the right of MAT are efficiently recruited, and in fact a donor situated 16 kb proximal to HMR is used in preference to HMR. The cis-acting chromosomal determinants of MAT alpha preference are not influenced by the chromosomal orientation of MAT or by sequences as far as 6 kb from HMR. These data argue that there is an alpha-specific mechanism to inhibit the use of donors to the left of MAT alpha, causing the cell to recombine most often with donors to the right of MAT alpha.  相似文献   

10.
A J Klar  J N Strathern  J B Hicks 《Cell》1981,25(2):517-524
Mating-type switches of the yeast Saccharomyces cerevisiae occur by unidirectional transposition of copies of unexpressed mating-type genetic information, residing at HML and HMR loci, into the expressed MAT locus. The HML and HMR loci remain unchanged. In contrast, in appropriate strains where the silent loci are also allowed to express, for example in mar mutants, efficient switches of HML and HMR are shown to occur at rates equivalent to those observed for MAT. Thus the position-effect control on the direction of transposition is affected by the state of expression of the locus under study the expressed loci switch regardless of their location.  相似文献   

11.
The mating-type switches in the yeast Saccharomyces cerevisiae occur by unidirectional transposition of replicas of unexpressed genetic information, residing at HML or HMR, into the mating-type locus (MAT). The source loci, HML and HMR, remain unchanged. Interestingly, when the HM cassettes are expressed, as in marl strains, the HML and HMR cassettes can also efficiently switch, apparently by obtaining genetic information from either of the other two cassettes (Klar et al., Cell 25:517-524, 1981). We have isolated a novel chromosome III rearrangement in heterothallic (marl ho) strains, which is also produced efficiently in marl HO cells, presumably the consequence of a recombination event between HML and HMR. The fusion results in the loss of sequences which are located distal to HML and to HMR and produces a ring derivative of chromosome III. Cells containing such a ring chromosome are viable as haploids; apparently, no essential loci are located distal to the HM loci. The fusion cassette behaves as a standard HM locus with respect to both regulation by the MAR/SIR control and its role in switching MAT.  相似文献   

12.
Simon P  Houston P  Broach J 《The EMBO journal》2002,21(9):2282-2291
Haploid Saccharomyces cells have the remarkable potential to change mating type as often as every generation, a process accomplished by an intrachromosomal gene conversion between an expressor locus MAT and one of two repositories of mating type information, HML or HMR. The particular locus selected as donor is dictated by the mating type of the cell, a bias that ensures productive mating type interconversion. Here we use green fluorescent protein tagging of the expressor and donor loci on chromosome III to show that this preference for donor locus does not result from a predetermined organization of chromosome III: HML and MAT as well as HMR and MAT remain separated in cells of both mating types. In fact, cells in which the inappropriate donor locus is artificially tethered to MAT still predominantly select the correct donor. We find, though, that initiation of switching leads to a rapid association of the correct donor locus with MAT. Thus, in mating type switching in Saccharomyces, donor preference is imposed at commitment to recombination rather than at physical contact of interacting DNA strands.  相似文献   

13.
14.
K. S. Weiler  L. Szeto    J. R. Broach 《Genetics》1995,139(4):1495-1510
Homothallic strains of Saccharomyces cerevisiae can convert mating type from a to α or α to a as often as every generation, by replacing genetic information specifying one mating type at the expressor locus, MAT, with information specifying the opposite mating type. The cryptic mating type information that is copied and inserted at MAT is contained in either of two loci, HML or HMR. The particular locus selected as donor during mating type interconversion is regulated by the allele expressed at MAT. MATa cells usually select HML, and MATα cells usually select HMR, a process referred to as donor preference. To identify factors required for donor preference, we isolated and characterized a number of mutants that frequently selected the nonpreferred donor locus during mating type interconversion. Many of these mutants were found to harbor chromosome rearrangements or mutations at MAT or HML that interfered with the switching process. However, one mutant carried a recessive allele of CHL1, a gene previously shown to be required for efficient chromosome segregation during mitosis. Homothallic strains of yeast containing a null allele of CHL1 exhibited almost random selection of the donor locus in a MATa background but were normal in their ability to select HMR in a MATα background. Our results indicate that Chl1p participates in the process of donor selection and are consistent with a model in which Chl1p helps establish an intrinsic bias in donor preference.  相似文献   

15.
16.
SAD mutation of Saccharomyces cerevisiae is an extra a cassette.   总被引:8,自引:5,他引:3       下载免费PDF全文
Sporulation of Saccharomyces cerevisiae ordinarily requires the a1 function of the a mating type locus. SAD is a dominant mutation that allows strains lacking a1 (MAT alpha/MAT alpha and mata1/MAT alpha diploids) to sporulate. We provide functional and physical evidence that SAD is an extra cassette in the yeast genome, distinct from those at HML, MAT, and HMR. The properties of SAD strains indicate that the a cassette at SAD produces a limited amount of a1 product, sufficient for promoting sporulation but not for inhibiting mating and other processes. These conclusions come from the following observations. (i) SAD did not act by allowing expression of HMRa: mata1/MAT alpha diploids carrying SAD and only alpha cassettes at HML and HMR sporulated efficiently. (ii) SAD acted as an a cassette donor in HML alpha HMR alpha strains and could heal a mata1 mutation to MATa as a result of mating type interconversion. (iii) The genome of SAD strains contained a single new cassette locus, as determined by Southern hybridization. (iv) Expression of a functions from the SAD a cassette was limited by Sir: sir- SAD strains exhibited more extreme phenotypes than SIR SAD strains. This observation indicates that SAD contains not only cassette information coding for a1 (presumably from HMRa) but also sites for Sir action.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号