首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aims:  To investigate the infection biology of Colletotrichum sublineolum (isolate CP2126) and defence responses in leaves of resistant (SC146), intermediately resistant (SC326) and susceptible (BTx623) sorghum genotypes.
Methods and Results:  Infection biology and defence responses were studied quantitatively by light microscopy, H2O2 accumulation by DAB staining and HRGP accumulation by immunological methods. Inhibition of conidial germination and appressorium formation may represent prepenetration defence responses on the leaf surface. Inducible defence responses in the resistant genotypes included decreases in formation of appressoria as well as accumulation of H2O2, HRGPs and phytoalexins. Concomitant with these inducible responses, fungal growth was stopped during or just after penetration in genotypes SC146 and SC326. High levels of H2O2 accumulating at late infection stages (5 days after inoculation) in the susceptible genotype BTx623 correlated with necrosis and tissue degeneration.
Conclusions:  The early accumulation of H2O2 and HRGPs indicates roles in defence whereas the late accumulation in genotype BTx623 correlated with successful pathogenesis.
Significance and Impact of the Study:  The fact that there is a significant correlation between induced accumulation of H2O2, papilla formation and cell wall cross-linking, as evidenced by HRGP accumulation, and cessation of pathogen growth in resistant genotypes may help exploit host resistance in sorghum.  相似文献   

3.
4.
The roles of salicylic acid (SA) and H2O2 in the induction of PR proteins in tobacco have been examined. Studies were conducted on wild-type tobacco and plants engineered to express a bacterial salicylate hydroxylase capable of metabolizing SA to catechol (SH-L plants). Wild-type and PR-1a—GUS-transformed plants express PR-1a following challenge with Pseudomonas syringae pathovar syringae , SA or 2,6-dichloro-isonicotinic acid (INA). In contrast, SH-L plants failed to respond to SA but did express PR-1a following INA treatment. H2O2 and the irreversible catalase inhibitor 3-amino-1,2,4-triazole (3-AT) were found to be weak inducers of PR-1a expression (relative to SA) in wild-type tobacco but were unable to induce PR-1a in SH-L plants, suggesting that the action of these compounds depends upon the accumulation of SA. A model has been proposed suggesting that SA binds to and inhibits a catalase inducing an increase in H2O2 leading to PR protein expression. Catalase activity has been measured in tobacco and no significant changes in activity following infection with P. syringae pv. syringae were detected. Furthermore, inhibition of catalase activity in vitro in plant extracts requires pre-incubation and only occurs at SA concentrations above 250 µM. Leaf disks pre-incubated with 1 mM SA do accumulate SA to these levels and PR-1a is efficiently induced but there is no apparent inhibition of catalase activity. It is also shown that a SA-responsive gene, PR-1a, and a H2O2-sensitive gene, AoPR-1, are both relatively insensitive to 3-AT suggesting that induction of these genes is unlikely to be due entirely to inhibition of an endogenous catalase.  相似文献   

5.
Aims:  Vanadium chloroperoxidase and its directed evolution mutant P395D/L241V/T343A were investigated for their antibacterial and antiviral potential at slightly alkaline pH and at a H2O2 concentration that is low compared to current nonenzymatic formulations.
Methods and Results:  Two bacteria (the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus ) and two viruses (the enveloped Herpes Simplex Virus and the nonenveloped Coxsackievirus B4) were incubated with the P395D/L241V/T343A mutant, 10 mmol l−1 H2O2 and 100 mmol l−1 Br at pH 8. Strong microbial reduction was observed and bactericidal and virucidal activities of the mutant were three to six orders of magnitude higher than for the wild-type enzyme.
Conclusions:  The P395D/L241V/T343A mutant of vanadium chloroperoxidase has a broad antimicrobial activity at alkaline conditions.
Significance and Impact of the Study:  For many disinfection formulations, antimicrobial activity at slightly alkaline pH values is required. To date, only the wild-type vanadium chloroperoxidase has been studied for its antibacterial activity, and only at acidic to neutral pH values. Its antiviral activity (e.g. useful for the cleaning of medical equipment) was not studied before. The observed activity for the alkalophilic P395D/L241V/T343A mutant is an important step forward in the application of this robust enzyme as a component in disinfection formulations.  相似文献   

6.
7.
A spontaneous mutant of Methanothermobacter thermautotrophicus resistant to tributyltin chloride (TBT) was isolated. TBT, the inhibitor of the A0 domain of A1A0-ATP synthase, inhibits methanogenesis in the wild-type cells; however, the TBT-resistant mutant exhibited methanogenesis even in the presence of 800 μM TBT. ATP synthesis driven by methanogenic electron transport was markedly diminished in the mutant strain. While TBT profoundly inhibited ATP synthesis driven by methanogenic electron transport in the wild type, only a slight inhibition was observed in the mutant strain. These results suggested a modification in the ATP-synthesizing system of the mutant strain. The sequence of the complete A1A0-ATP synthase operon ( Mth952 – Mth961 ) in the wild-type and mutant strains was determined and compared. Three mutations leading to amino acid substitutions in two A1A0-ATP synthase subunits were identified – Val338Ala in subunit A and Leu252Ile and Ser293Ala in subunit B. Moreover, this study revealed the differential expression of several proteins that may contribute to TBT resistance. The results imply that change of TBT sensitivities of TBT-resistant mutant is due to mutational substitutions in the A1A0-ATP synthase operon.  相似文献   

8.
Two genes, designated chsC and chsG were isolated from DNA libraries of the opportunistic fungal pathogen, Aspergillus fumigatus . The genes were characterized with respect to their nucleotide sequences and mutant phenotypes. The complete deduced amino acid sequences of chsC and chsG show that the products of both genes are Class III zymogen-type enzymes. A mutant strain constructed by disruption of chsC is phenotypically indistinguishable from the wild-type strain, but chsG and chsC   chsG strains have reduced colony radial growth rate and chitin synthase activity, conidiate poorly and produce highly branched hyphae. Despite these defects, the double-mutant strain retained the ability to cause pulmonary disease in neutropenic mice. However, in comparison to the wild-type strain, there was a decrease in mortality and delay in the onset of illness in mice inoculated with the double-mutant strain, which was associated with smaller and more highly branched fungal colonies in lung tissue.  相似文献   

9.
To better understand the response of a plant to O3 stress, an integrated microarray analysis was performed on Arabidopsis plants exposed during 2 days to purified air or 150 nl l−1 O3, 8 h day−1. Agilent Arabidopsis 2 Oligo Microarrays were used of which the reliability was confirmed by quantitative real-time PCR of nine randomly selected genes. We confirmed the O3 responsiveness of heat shock proteins (HSPs), glutathione- S -tranferases and genes involved in cell wall stiffening and microbial defence. Whereas, a previous study revealed that during an early stage of the O3 stress response, gene expression was strongly dependent on jasmonic acid and ethylene, we report that at a later stage (48 h) synthesis of jasmonic acid and ethylene was downregulated. In addition, we observed the simultaneous induction of salicylic acid synthesis and genes involved in programmed cell death and senescence. Also typically, the later stage of the response to O3 appeared to be the induction of the complete pathway leading to the biosynthesis of anthocyanin diglucosides and the induction of thioredoxin-based redox control. Surprisingly absent in the list of induced genes were genes involved in ASC-dependent antioxidation, few of which were found to be induced after 12 h of O3 exposure in another study. We discuss these and other particular results of the microarray analysis and provide a map depicting significantly affected genes and their pathways highlighting their interrelationships and subcellular localization.  相似文献   

10.
Viscotoxins (Vts) are basic peptides expressed in mistletoe leaves, seeds and stems which have been shown to be cytotoxic to mammalian cells. The aim of this study was to analyse whether Vts were able to control and/or inhibit the growth of phytopathogenic fungi to obtain a clue to their biological function. Incubation of two Vt isoforms, VtA3 and VtB, at a final concentration of 10 µ M resulted in a complete blockage of the germination of spores from three different pathogenic fungi. It was also shown that lower concentrations than 10 µ M of VtA3 and VtB inhibit their mycelial growth in a dose-dependent manner. The protein dose required to inhibit the growth of Fusarium solani and Sclerotinia sclerotiorum to a 50% was between 1.5 and 3.75 µ M , which represents a potent activity. No significant differences in the antifungal potency for each Vt isoform, either VtA3 and VtB, were observed, although they have been shown to exert differential cytotoxicity on mammalian cells. It was also demonstrated that Vts act as fungicidal compounds. To explore the basis of the antifungal activity the ability of VtA3 to induce changes in membrane permeability and on the oxidative status of F. solani spores was analysed. By using a specific fluorescent probe on intact spores, it was demonstrated that VtA3 produces rapid changes in fungal membrane permeability. It also induces H2O2 production verified by a histochemical staining. The data presented in this study support a direct role of Vts in the plant defence determined by their lethal effect on fungal pathogens.  相似文献   

11.
Aims:  To develop solid-state fermentation system (SSF) for hyper production of tylosin from a mutant γ-1 of Streptomyces fradiae NRRL-2702 and its parent strain.
Methods and Results:  Various agro-industrial wastes were screened to study their effect on tylosin production in SSF. Wheat bran as solid substrate gave the highest production of 2500 μg of tylosin g−1 substrate by mutant γ-1 against parent strain (300 μg tylosin g−1 substrate). The tylosin yield was further improved to 4500 μg g−1 substrate [70% moisture, 10% inoculum (v/w), pH 9·2, 30°C, supplemental lactose and sodium glutamate on day 9]. Wild-type strain displayed less production of tylosin (655 μg of tylosin g−1 substrate) in SSF even after optimization of process parameters.
Conclusion:  The study has shown that solid-state fermentation system significantly enhanced the tylosin yield by mutant γ-1.
Significance and Impact of the Study:  This study proved to be very useful and resulted in 6·87 ± 0·30-fold increase in tylosin yield by this mutant when compared to that of wild-type strain.  相似文献   

12.
The GTPase Ras1 activates the yeast-to-hypha transition in Candida albicans by activating cAMP synthesis. Here, we have characterized Ras2. Ras2 belongs to a group of atypical Ras proteins in some fungal species that share poor identity with other Ras GTPases with many variations in conserved motifs thought to be crucial for Ras-associated activities. We find that recombinant Ras2 is enzymatically as active as Ras1. However, only RAS1 can rescue the lethality of the Saccharomyces cerevisiae ras1 ras2 mutant, suggesting functional divergence of the two genes. ras2 Δ is normal in hyphal growth, but deleting RAS2 in the ras1 Δ background greatly aggravates the hyphal defect, indicating that Ras2 also has a role in hyphal development. Strikingly, while RAS1 deletion causes a ∼20-fold decrease in cellular cAMP, further deletion of RAS2 restores it to ∼30% of the wild-type level. Consistently, while the ras1 Δ mutant enters the stationary phase prematurely, the double mutant does so normally. Moreover, ras1 Δ cells exhibit increased resistance to H2O2 and higher sensitivity to the heavy metal Co2+, whereas ras2 Δ cells show the opposite phenotypes. Together, our data reveal a novel regulatory mechanism by which two antagonizing Ras GTPases balance each other in regulating multiple cellular processes in C. albicans .  相似文献   

13.
Expression of Bradyrhizobium japonicum wild-type strain USDA110 nirK , norC and nosZ denitrification genes in soybean root nodules was studied by in situ histochemical detection of β -galactosidase activity. Similarly, PnirK- lacZ , PnorC- lacZ , and PnosZ- lacZ fusions were also expressed in bacteroids isolated from root nodules. Levels of β -galactosidase activity were similar in both bacteroids and nodule sections from plants that were solely N2-dependent or grown in the presence of 4 m M KNO3. These findings suggest that oxygen, and not nitrate, is the main factor controlling expression of denitrification genes in soybean nodules. In plants not amended with nitrate, B. japonicum mutant strains GRK308, GRC131, and GRZ25, that were altered in the structural nirK , norC and nosZ genes, respectively, showed a wild-type phenotype with regard to nodule number and nodule dry weight as well as plant dry weight and nitrogen content. In the presence of 4 m M KNO3, plants inoculated with either GRK308 or GRC131 showed less nodules, and lower plant dry weight and nitrogen content, relative to those of strains USDA110 and GRZ25. Taken together, the present results revealed that although not essential for nitrogen fixation, mutation of either the structural nirK or norC genes encoding respiratory nitrite reductase and nitric oxide reductase, respectively, confers B. japonicum reduced ability for nodulation in soybean plants grown with nitrate. Furthermore, because nodules formed by each the parental and mutant strains exhibited nitrogenase activity, it is possible that denitrification enzymes play a role in nodule formation rather than in nodule function.  相似文献   

14.
The class 1 pathogenesis-related (PR) proteins are thought to be involved in plant defence responses, but their molecular functions are unknown. The function of PR-1 was investigated in tobacco by generating stable PR-1a-silenced lines in which other acidic PR-1 genes (PR-1b and PR-1c) were silenced. Plants lacking extracellular PR-1s were more susceptible than wild-type plants to the oomycete Phytophthora parasitica but displayed unaffected systemic acquired resistance and developmental resistance to this pathogen. Treatment with salicylic acid up-regulates the PR-1g gene, encoding a basic protein of the PR-1 family, in PR-1-deficient tobacco, indicating that PR-1 expression may repress that of PR-1g. This shows that acidic PR-1s are dispensable for expression of salicylic acid-dependent acquired resistances against P. parasitica and may reveal a functional overlap in tobacco defence or a functional redundancy in the PR-1 gene family. The data also show that there is a specific increase in apoplastic beta-(1-->3)-glucanase activity and a decrease in beta-(1-->3)-glucan deposition in PR-1-silenced lines following activation of defence reactions. Complementation of the silencing by apoplastic treatment with a recombinant PR-1a protein largely restores the wild-type beta-(1-->3)-glucanase activity and callose phenotype. Taken together with the immunolocalization of PR-1a to sites of beta-(1-->3)-glucan deposition in wild-type plants, these results are indicative of a function for PR-1a in regulation of enzymatic activity of extracellular beta-(1-->3)-glucanases.  相似文献   

15.
To clarify the role of the fungal nitrate assimilation pathway in nitrate reduction by mycorrhizal plants, nitrate reductase (NR)-deficient (NR) mutants of the ectomycorrhizal basidiomycete Hebeloma cylindrosporum Romagnesi have been selected. These mutants were produced by u.v. mutagenesis on protoplasts originating from homokaryotic mycelia belonging to complementary mating types of this heterothallic tetrapolar species. Chlorate-resistant mutants were first selected in the presence of different nitrogen (N) sources in the culture medium. Among 1495 chlorate resistant mycelia, 30 failed to grow on nitrate and lacked a detectable NR activity. Growth tests on different N sources suggested that the NR activity of all the different mutants is specifically impaired as a result of mutations in either the gene coding for NR apoprotein or genes controlling the synthesis of the molybdenum cofactor. Furthermore, restoration of NR activity in some of the dikaryons obtained after crosses between the different mutant mycelia suggested that not all the selected mutations mapped in the same gene. Utilization of N on a NH415NO3 medium was studied for two mutant strains and their corresponding wild-type homokaryons. None of the mutants could use nitrate whereas 15N enrichment values indicated that 13–27% of N present in 13-d-old wild-type mycelia originated from nitrate. Apparently, the mutant mycelia do not compensate their inability to use nitrate by a more efficient use of ammonium. These different NR mutants still form mycorrhizas with the habitual host plant, Pinus pinaster (Ait.), making them suitable for study of the contribution of the fungal nitrate assimilation pathway to nitrate assimilation by mycorrhizal plants.  相似文献   

16.
Inflammation patterns induced by different Burkholderia species in mice   总被引:1,自引:0,他引:1  
Burkholderia pseudomallei , which causes melioidosis, a severe, mainly pulmonary disease endemic in South-East Asia, is considered to be the most pathogenic of the Burkholderia genus. B. thailandensis , however, is considered avirulent. We determined differences in patterns of inflammation of B. pseudomallei 1026b (clinical virulent isolate), B. pseudomallei AJ1D8 (an in vitro invasion-deficient mutant generated from strain 1026b by Tn5-OT182 mutagenesis) and B. thailandensis by intranasally inoculating C57BL/6 mice with each strain. Mice infected with B. thailandensis showed a markedly decreased bacterial outgrowth from lungs, spleen and blood 24 h after inoculation, compared with infection with B. pseudomallei and the invasion mutant AJ1D8. Forty-eight hours after inoculation, B. thailandensis was no longer detectable. This was consistent with elevated pulmonary cytokine and chemokine concentrations after infection with B. pseudomallei 1026b and AJ1D8, and the absence of these mediators 48 h, but not 24 h, after inoculation with B. thailandensis . Histological examination, however, did show marked pulmonary inflammation in the mice infected with B. thailandensis , corresponding with substantial granulocyte influx and raised myeloperoxidase levels. Survival experiments showed that infection with 1 × 103 cfu B. thailandensis was not lethal, whereas inoculation with 1 × 106 cfu B. thailandensis was equally lethal as 1 × 103 cfu B. pseudomallei 1026b or AJ1D8. These data show that B . pseudomallei AJ1D8 is just as lethal as wild-type B. pseudomallei in an in vivo mouse model, and B. thailandensis is perhaps more virulent than is often recognized.  相似文献   

17.
Abstract: Ser55 within the head domain of neurofilament light chain (NF-L) is transiently phosphorylated by protein kinase A, and phosphorylation of this residue is thought to regulate assembly of neurofilaments. To understand how Ser55 phosphorylation influences NF-L assembly, wild-type and mutant NF-L genes in which Ser55 was mutated to alanine, so as to prevent phosphorylation, or to aspartate, so as to mimic permanent phosphorylation, were transfected into mammalian cells that contain or do not contain an endogenous intermediate filament network. Wild-type and mutant NF-Ls localised to the Triton X-100-insoluble fraction, which suggests that phosphorylation of Ser55 does not inhibit assembly of NF-L and NF-L/vimentin polymers at or below the tetrameric stage. Immunofluorescence microscopy of transfected cells demonstrated that the wild-type and mutant NF-Ls all colocalised with vimentin to produce similar filamentous arrays. However, in cells lacking an endogenous intermediate filament network, the aspartate mutant produced a pattern of staining different from that of the wild-type or alanine mutant. These results suggest that phosphorylation of NF-L Ser55 is not a mechanism that precludes assembly of neurofilaments from monomers into intermediate filament structures but that phosphorylation/dephosphorylation of this residue might confer more subtle characteristics on neurofilament assembly properties and architecture.  相似文献   

18.
Vibrio anguillarum is a gram-negative halophilic bacterium that causes vibriosis in marine fish, freshwater fish and other aquatic animals. Bacteria have developed strategies to survive in harsh environments. The alternative σ factor, RpoS (σS), plays a key role in surviving under stress conditions in some gram-negative bacteria. An rpoS mutant of pathogenic V. anguillarum W-1 was constructed by homologous recombination. The sensitivity of the rpoS mutant to osmotic stress [2.4 M NaCl in artificial seawater (ASW)] did not change obviously, but the sensitivity of the rpoS mutant to high temperature (45 °C in ASW), UV-irradiation and oxidative stress (5 mM H2O2 in ASW) increased 33-fold, sixfold and 10-fold, respectively. The production of extracellular phospholipase, diastase, lipase, caseinase, hemolysin, catalase and protease of the rpoS mutant decreased markedly compared with those of the wild-type strain. Virulence of the rpoS mutant strain was also decreased when it was inoculated intraperitoneally into zebra fish; the lethal dose 50% of the wild type and the mutant was 8.66 × 104 and 2.55 × 106 CFU per fish, respectively. These results indicated that the RpoS of V. anguillarum plays important roles in bacterial adaptation to environmental stresses and its pathogenicity.  相似文献   

19.
Mucor circinelloides LU M40 produced 12·2 mU ml−1 of linamarase activity when grown in a 3 l fermenter in the following optimized medium (g l−1 deionized water): pectin, 10·0; (NH4)2SO4,
1·0; KH2PO4, 2·0; Na2HPO4, 0·7; MgSO4.7H2O, 0·5; yeast extract, 1·0; Tween-80,
1·0, added after 48 h of fermentation. The purified linamarase was a dimeric protein with a molecular mass of 210 kDa; the enzyme showed optimum catalytic activity at pH 5·5 and 40 °C and had a wide range (3·0–7·0) of pH stability. The enzyme substrate specificity on plant cyanogenic glycosides was wide; the Km value for linamarin was 2·93 mmol l−1. The addition, before processing, of the fungal crude enzyme to cassava roots facilitated and shortened detoxification; after 24 h of fermentation, all cyanogenic glycosides were hydrolysed.  相似文献   

20.
Phylloquinone is the one-electron carrier at the A1 site of photosystem I, and is essential for photosynthesis. Arabidopsis mutants deficient in early steps of phylloquinone synthesis do not become autotrophic and are seedling lethals, even when grown on sucrose-supplemented media. Here, we identify acyl-activating enzyme 14 (AAE14, At1g30520) as the o -succinylbenzoyl-coenzyme A (OSB-CoA) ligase acting in phylloquinone synthesis. Three aae14 mutant alleles, identified by reverse genetics, were found to be seedling lethal, to contain no detectable phylloquinone (< 0.1 pmol mg−1 fresh weight) compared with 10 pmol mg−1 fresh weight in wild-type leaves, and to accumulate OSB. AAE14 was able to restore menaquinone biosynthesis when expressed in an Escherichia coli mutant disrupted in the menE gene that encodes the bacterial OSB-CoA ligase. Weak expression of an AAE14 transgene in mutant plants (controlled by the uninduced XVE promoter) resulted in chlorotic, slow-growing plants that accumulated an average of 4.7 pmol mg−1 fresh weight of phylloquinone. Inducing the XVE promoter in these plants, or expressing an AAE14 transgene under the control of the CaMV 35S promoter, led to full complementation of the mutant phenotype. aae14 -mutant plants were also able to synthesize phylloquinone when provided with 1,4-dihydroxy-2-naphthoate, an intermediate in phylloquinone synthesis downstream of the OSB-CoA ligase reaction. Expression of an AAE14:GFP reporter construct indicated that the protein accumulated in discrete foci within the chloroplasts. This and other evidence suggests that the enzymes of phylloquinone synthesis from isochorismate may form a complex in the chloroplast stroma to facilitate the efficient channeling of intermediates through the pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号