首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]), Epstein-Barr virus (EBV), and murine gammaherpesvirus 68 (MHV68; also known as gammaherpesvirus 68 [γHV68] or murine herpesvirus 4 [MuHV-4]), establish lifelong latency in the resting memory B cell compartment. However, little is known about how this reservoir of infected mature B cells is maintained for the life of the host. In the context of a normal immune system, the mature B cell pool is naturally maintained by the renewable populations of developing B cells that arise from hematopoiesis. Thus, recurrent infection of these developing B cell populations could allow the virus continual access to the B cell lineage and, subsequent to differentiation, the memory B cell compartment. To begin to address this hypothesis, we examined whether MHV68 establishes latency in developing B cells during a normal course of infection. In work described here, we demonstrate the presence of viral genome in bone marrow pro-pre-B cells and immature B cells during early latency and immature B cells during long-term latency. Further, we show that transitional B cells in the spleen are latently infected and express the latency-associated nuclear antigen (LANA) throughout chronic infection. Because developing B cells normally exhibit a short life span and a high rate of turnover, these findings suggest a model in which gammaherpesviruses may gain access to the mature B cell compartment by recurrent seeding of developing B cells.  相似文献   

3.
Epstein-Barr virus (EBV) is capable of adopting three distinct forms of latency: the type III latency program, in which six EBV-encoded nuclear antigens (EBNAs) are expressed, and the type I and type II latency programs, in which only a single viral nuclear protein, EBNA1, is produced. Several groups have reported heavy CpG methylation of the EBV genome in Burkitt's lymphoma cell lines which maintain type I latency, and loss of viral genome methylation in tumor cell lines has been correlated with a switch to type III latency. Here, evidence that the type III latency program must be inactivated by methylation to allow EBV to enter the type I or type II restricted latency program is provided. The data demonstrates that the EBNA1 gene promoter, Qp, active in types I and II latency, is encompassed by a CpG island which is protected from methylation. CpG methylation inactivates the type III latency program and consequently allows the type I or II latency program to operate by alleviating EBNA1-mediated repression of Qp. Methylation of the type III latency EBNA gene promoter, Cp, appears to be essential to prevent type III latency, since EBNA1 is expressed in all latently infected cells and, as shown here, is the only viral antigen required for activation of Cp. EBV is thus a pathogen which subverts host-cell-determined methylation to regulate distinct genetic programs.  相似文献   

4.
Chen YF  Tung CL  Chang Y  Hsiao WC  Su LJ  Sun HS 《Genomics》2011,97(4):205-213
EBV infects more than 90% of the human population and persists in most individuals as a latent infection where the viral genome is silenced by host-driven methylation. The lytic cycle is initiated when the viral protein Zta binds to methylated BRLF1 and BRRF1 promoters. Although studies reveal the role of Zta and methylation changes in the viral genome upon EBV infection to reactivation, whether Zta plays any role in alteration of methylation in the host genome remains unknown. Using an inducible model, we demonstrate that global DNA methylation, based on whole-genome 5-methylcytosine content, and regional DNA methylation in repetitive elements, imprinting genes and the X chromosome, remains unchanged in response to Zta expression. Expression of DNA methyltransferases was also unaffected by ectopically expressed Zta. Our data imply that alteration of host gene expression following EBV reactivation may reflect methylation-independent Zta-mediated gene activation and not epigenetic modification of the host genome.  相似文献   

5.
The Epstein Barr virus (EBV) infects almost 95% of the population worldwide. While typically asymptomatic, EBV latent infection is associated with several malignancies of epithelial and lymphoid origin in immunocompromised individuals. In latently infected cells, the EBV genome persists as a chromatinized episome that expresses a limited set of viral genes in different patterns, referred to as latency types, which coincide with varying stages of infection and various malignancies. We have previously demonstrated that latency types correlate with differences in the composition and structure of the EBV episome. Several cellular factors, including the nuclear lamina, regulate chromatin composition and architecture. While the interaction of the viral genome with the nuclear lamina has been studied in the context of EBV lytic reactivation, the role of the nuclear lamina in controlling EBV latency has not been investigated. Here, we report that the nuclear lamina is an essential epigenetic regulator of the EBV episome. We observed that in B cells, EBV infection affects the composition of the nuclear lamina by inducing the expression of lamin A/C, but only in EBV+ cells expressing the Type III latency program. Using ChIP-Seq, we determined that lamin B1 and lamin A/C bind the EBV genome, and their binding correlates with deposition of the histone repressive mark H3K9me2. By RNA-Seq, we observed that knock-out of lamin A/C in B cells alters EBV gene expression. Our data indicate that the interaction between lamins and the EBV episome contributes to the epigenetic control of viral gene expression during latency, suggesting a restrictive function of the nuclear lamina as part of the host response against viral DNA entry into the nucleus.  相似文献   

6.
7.
8.
Loss of the Epstein-Barr virus (EBV) genome from Akata Burkitt lymphoma (BL) cells is coincident with a loss of malignant phenotype, despite the fact that Akata and other EBV-positive BL cells express a restricted set of EBV gene products (type I latency) that are not known to overtly affect cell growth. Here we demonstrate that reestablishment of type I latency in EBV-negative Akata cells restores tumorigenicity and that tumorigenic potential correlates with an increased resistance to apoptosis under growth-limiting conditions. The antiapoptotic effect of EBV was associated with a higher level of Bcl-2 expression and an EBV-dependent decrease in steady-state levels of c-MYC protein. Although the EBV EBNA-1 protein is expressed in all EBV-associated tumors and is reported to have oncogenic potential, enforced expression of EBNA-1 alone in EBV-negative Akata cells failed to restore tumorigenicity or EBV-dependent down-regulation of c-MYC. These data provide direct evidence that EBV contributes to the tumorigenic potential of Burkitt lymphoma and suggest a novel model whereby a restricted latency program of EBV promotes B-cell survival, and thus virus persistence within an immune host, by selectively targeting the expression of c-MYC.  相似文献   

9.
10.
11.
Gammaherpesviruses establish a life-long chronic infection that is tightly controlled by the host immune response. We previously demonstrated that viruses lacking the gammaherpesvirus 68 (gammaHV68) viral cyclin (v-cyclin) exhibited a severe defect in reactivation from latency and persistent replication. In this analysis of chronic infection, we demonstrate that the v-cyclin is required for gammaHV68-associated mortality in B-cell-deficient mice. Furthermore, we identify the v-cyclin as the first gene product required for maintenance of gammaherpesvirus latency in vivo in the absence of B lymphocytes. While the v-cyclin was necessary for maintenance of latency in the absence of B cells, maintenance of v-cyclin-deficient viruses was equivalent to that of wild-type gammaHV68 in the presence of B cells. These results support a model in which maintenance of chronic gammaHV68 infection requires v-cyclin-dependent reactivation and reseeding of non-B-cell latency reservoirs in the absence of B cells and raise the possibility that B cells represent a long-lived latency reservoir maintained independently of reactivation. These results highlight distinct mechanisms for the maintenance of chronic infection in immunocompetent and B-cell-deficient mice and suggest that the different latency reservoirs have distinct gene requirements for the maintenance of latency.  相似文献   

12.
Murine herpes virus (MHV), a natural pathogen originally isolated from free-living rodents, constitutes the most amenable animal model for human gamma herpesviruses. Based on DNA sequence homology, this virus was classified as Murid Herpesvirus 4 to subfamily Gammaherpesvirinae. Pilot studies in our laboratory, using mice inoculated by the intranasal route, showed that MHV infects macrophages, B lymphocytes, lung alveolar as well as endothelial cells. From the lungs the virus spreads via the bloodstream to spleen and bone marrow and via the lymphatics to the mediastinal lymph nodes. Similarly to other gamma herpesviruses, MHV established life-long latency maintained in host B lymphocytes and macrophages. An IM-like syndrome (per analogy to EBV) may develop during acute MHV infection, in which the atypical T/CD8+ lymphocytes eliminate viral DNA carrying B cells expressing the M2 latency associated protein. During latency, the MHV LANA (a KSHV LANA homologue) maintains the latent viral genome, assuring its copying and partition to new carrier cells in the course of division of the maternal cell. The nonproductive latency is turned onto virus replication by means of Rta protein. The chronic lymphoproliferative syndrome of unclear pathogenesis, which occurs in a certain part of latent MHV carriers, is related to the expression of gamma herpesvirus common latency-associated genes such as v-cyclin and/or to that of a virus-specific (M11/bcl-2) gene. This review attempts to summarize our knowledge concerning the function of MHV genes (either gamma herpesvirus common or MHV specific) related to immune evasion, latency and lymphoproliferation when highlighting the unsolved problems and/or controversial opinions.  相似文献   

13.
14.
15.
16.
Although Epstein-Barr virus (EBV) usually establishes an asymptomatic lifelong infection, it is also implicated in the development of germinal center (GC) B-cell-derived malignancies, including Hodgkin's lymphoma (HL). Following primary infection, EBV remains latent in the memory B-cell population, where host-driven methylation of viral DNA contributes to the repression of viral gene expression. However, it is still unclear how EBV harnesses the cell's methylation machinery in B cells, how this contributes to viral persistence, and what impact this has on the methylation of cellular genes. We show that EBV infection of GC B cells is followed by upregulation of the DNA methyltransferase DNMT3A and downregulation of DNMT3B and DNMT1. We show that the EBV latent membrane protein 1 (LMP1) oncogene downregulates DNMT1 and that DNMT3A binds to the viral promoter Wp. Genome-wide promoter arrays performed with these cells showed that EBV-associated methylation changes in cellular genes were not randomly distributed across the genome but clustered at chromosomal locations, consistent with an instructive pattern of methylation, and were in part determined by promoter CpG content. Both DNMT3B and DNMT1 were downregulated and DNMT3A was upregulated in HL cell lines, recapitulating the pattern of expression observed following EBV infection of GC B cells. We also found, by using gene expression profiling, that genes differentially expressed following EBV infection of GC B cells were significantly enriched for those reported to be differentially expressed in HL. These observations suggest that EBV-infected GC B cells are a useful model for studying virus-associated changes contributing to the pathogenesis of HL.  相似文献   

17.
18.
Murine gammaherpesvirus 68 (γHV68 or MHV68) is genetically related to the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), providing a useful system for in vivo studies of the virus-host relationship. To begin to address fundamental questions about the mechanisms of the establishment of gammaherpesvirus latency, we previously generated a replication-defective γHV68 lacking the expression of the single-stranded DNA binding protein encoded by orf6. In work presented here, we demonstrate that this mutant virus established a long-term infection in vivo that was molecularly identical to wild-type virus latency. Thus, despite the absence of an acute phase of lytic replication, the mutant virus established a chronic infection in which the viral genome (i) was maintained as an episome and (ii) expressed latency-associated, but not lytic replication-associated, genes. Macrophages purified from mice infected with the replication-defective virus harbored viral genome at a frequency that was nearly identical to that of wild-type γHV68; however, the frequency of B cells harboring viral genome was greatly reduced in the absence of lytic replication. Thus, this replication-defective gammaherpesvirus efficiently established in vivo infection in macrophages that was molecularly indistinguishable from wild-type virus latency. These data point to a critical role for lytic replication or reactivation in the establishment or maintenance of latent infection in B cells.  相似文献   

19.
20.
C Rooney  J G Howe  S H Speck    G Miller 《Journal of virology》1989,63(4):1531-1539
The Epstein-Barr virus (EBV) genes expressed in B lymphocytes immortalized in vitro or in Burkitt's lymphoma (BL) cells infected in vivo have been characterized previously; however, the viral products which are essential for immortalization or for establishment of EBV latency are still not known. To approach this question, we compared the kinetics of expression of EBV nuclear antigens and the two EBV-encoded small RNAs, EBER1 and EBER2, after infection of primary B cells or EBV genome-negative BL cells with either an immortalizing EBV strain (B95-8) or the nonimmortalizing deletion mutant (HR-1). Following infection of primary cells with B95-8 virus, EBV nuclear antigen (EBNA)-2 was expressed first, followed by EBNA-1, -3, and -4 (also called leader protein [LP]) and the two small RNAs. Infection of EBV genome-negative BL cells with the same strain of virus resulted in a similar pattern of gene expression, except that the EBNAs appeared together and more rapidly. EBERs were not apparent in one BL cell line converted by B95-8. The only products detected after infection of primary B lymphocytes with the HR-1 deletion mutant were the EBNA-4 (LP) family and trace amounts of EBER1. Although HR-1 could express neither EBNA-1, EBNA-3, nor EBER2 in primary cells, all these products were expressed rapidly after HR-1 infection of EBV genome-negative BL cell lines. The results indicate that the mutation in HR-1 virus affects immortalization not only through failure to express EBNA-2, a gene which is deleted, but also indirectly by curtailing expression of several other EBV genes whose coding regions are intact in the HR-1 virus and normally expressed during latency. The pattern of latent EBV gene expression after HR-1 infection is dependent on the host cell, perhaps through products specific for the cell cycle or the state of B-cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号