首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Canary archipelago, located on the northwestern Atlantic coast of Africa, is comprised of seven islands aligned from east to west, plus seven minor islets. All the islands were formed by volcanic eruptions and their geological history is well documented providing a historical framework to study colonization events. The Canary Island pine (Pinus canariensis C. Sm.), nowadays restricted to the westernmost Canary Islands (Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro), is considered an old (Lower Cretaceous) relic from an ancient Mediterranean evolutionary centre. Twenty seven chloroplast haplotypes were found in Canary Island pine but only one of them was common to all populations. The distribution of haplotypic variation in P. canariensis suggested the colonization of western Canary Islands from a single continental source located close to the Mediterranean Basin. Present-day populations of Canary Island pine retain levels of genetic diversity equivalent to those found in Mediterranean continental pine species, Pinus pinaster and Pinus halepensis. A hierarchical analysis of variance (AMOVA) showed high differentiation among populations within islands (approximately 19%) but no differentiation among islands. Simple differentiation models such as isolation by distance or stepping-stone colonization from older to younger islands were rejected based on product-moment correlations between pairwise genetic distances and both geographic distances and population-age divergences. However, the distribution of cpSSR diversity within the islands of Tenerife and Gran Canaria pointed towards the importance of the role played by regional Pliocene and Quaternary volcanic activity and long-distance gene flow in shaping the population genetic structure of the Canary Island pine. Therefore, conservation strategies at the population level are strongly recommended for this species.Communicated by D.B. NealeA. Gómez and S.C. González-Martínez as joint authors  相似文献   

2.
Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.  相似文献   

3.
We analyzed the genetic structure and relationships of house mouse (Mus musculus) populations in the remote Atlantic archipelago of the Azores using nuclear sequences and microsatellites. We typed Btk and Zfy2 to confirm that the subspecies Mus musculus domesticus was the predominant genome in the archipelago. Nineteen microsatellite loci (one per autosome) were typed in a total of 380 individuals from all nine Azorean islands, the neighbouring Madeiran archipelago (Madeira and Porto Santo islands), and mainland Portugal. Levels of heterozygosity were high on the islands, arguing against population bottlenecking. The Azorean house mouse populations were differentiated from the Portuguese and Madeiran populations and no evidence of recent migration between the three was obtained. Within the Azores, the Eastern, Western, and Central island groups tended to act as separate genetic units for house mice, with some exceptions. In particular, there was evidence of recent migration events among islands of the Central island group, whose populations were relatively undifferentiated. Santa Maria had genetically distinctive mice, which may relate to its colonization history. © 2013 The Linnean Society of London  相似文献   

4.
Island populations provide natural laboratories for studying key contributors to evolutionary change, including natural selection, population size and the colonization of new environments. The demographic histories of island populations can be reconstructed from patterns of genetic diversity. House mice (Mus musculus) inhabit islands throughout the globe, making them an attractive system for studying island colonization from a genetic perspective. Gough Island, in the central South Atlantic Ocean, is one of the remotest islands in the world. House mice were introduced to Gough Island by sealers during the 19th century and display unusual phenotypes, including exceptionally large body size and carnivorous feeding behaviour. We describe genetic variation in Gough Island mice using mitochondrial sequences, nuclear sequences and microsatellites. Phylogenetic analysis of mitochondrial sequences suggested that Gough Island mice belong to Mus musculus domesticus, with the maternal lineage possibly originating in England or France. Cluster analyses of microsatellites revealed genetic membership for Gough Island mice in multiple coastal populations in Western Europe, suggesting admixed ancestry. Gough Island mice showed substantial reductions in mitochondrial and nuclear sequence variation and weak reductions in microsatellite diversity compared with Western European populations, consistent with a population bottleneck. Approximate Bayesian computation (ABC) estimated that mice recently colonized Gough Island (~100 years ago) and experienced a 98% reduction in population size followed by a rapid expansion. Our results indicate that the unusual phenotypes of Gough Island mice evolved rapidly, positioning these mice as useful models for understanding rapid phenotypic evolution.  相似文献   

5.
Recombination rate is a heritable trait that varies among individuals. Despite the major impact of recombination rate on patterns of genetic diversity and the efficacy of selection, natural variation in this phenotype remains poorly characterized. We present a comparison of genetic maps, sampling 1212 meioses, from a unique population of wild house mice (Mus musculus domesticus) that recently colonized remote Gough Island. Crosses to a mainland reference strain (WSB/EiJ) reveal pervasive variation in recombination rate among Gough Island mice, including subchromosomal intervals spanning up to 28% of the genome. In spite of this high level of polymorphism, the genomewide recombination rate does not significantly vary. In general, we find that recombination rate varies more when measured in smaller genomic intervals. Using the current standard genetic map of the laboratory mouse to polarize intervals with divergent recombination rates, we infer that the majority of evolutionary change occurred in one of the two tested lines of Gough Island mice. Our results confirm that natural populations harbour a high level of recombination rate polymorphism and highlight the disparities in recombination rate evolution across genomic scales.  相似文献   

6.
《Zoology (Jena, Germany)》2014,117(6):383-391
We studied the genetic diversity and phylogeography of the goldcrest Regulus regulus from the archipelago of the Azores (North Atlantic Ocean) based on sequences of two mitochondrial genes (cytochrome b and the NADH dehydrogenase subunit 2) and one nuclear gene in the Z-chromosome (intron 9 of the aconitase 1) from 69 individuals, and 41 birds from the Canary Islands and continental Europe for outgroup comparison. To understand the level of concordance between the genetic data and possible morphometric variability, 197 adult living birds from the seven Azorean islands where the species breeds were analysed in terms of eight morphometric characters. Our results are in accordance with previous studies, indicating a recent expansion of goldcrests throughout the archipelago and a low divergence in relation to continental Europe. Within the Azores, there is evidence of historical and/or recent gene flow among the island's populations, revealing a lack of current genetic structure within the archipelago. Only goldcrests from Flores Island seem to be genetically distinct and showed significantly larger body mass and tarsus length than birds on the other islands.  相似文献   

7.
Aim Genetically differentiated insular populations are candidates for independent units for conservation. However, occasional immigration to reduced island populations may occur and potentially have important consequences in their future viability and evolutionary potential. In this study, we investigate the conservation implications of population structure and connectivity of insular and continental populations of a migratory raptor as determined using genetic tools and satellite tracking. Location Western European populations in the Iberian Peninsula and two insular populations in the Mediterranean Sea (Balearic Islands) and Atlantic Ocean (Canary Islands). Methods We genotyped 22 microsatellite loci in 96 Egyptian vultures (Neophron percnopterus) from the Iberian Peninsula, 36 from Menorca (Balearic archipelago) and 242 (85% of the current population) from Fuerteventura (Canary Islands). We analysed genetic variation to estimate structure, gene flow, genetic diversity, effective size and recent demographic history of the populations. Additionally, 19 vultures were marked with satellite transmitters to track their migration routes. Results Insular populations were genetically differentiated from those of the mainland. We detected immigration in the insular populations and within the continental counterpart. We found similar levels of genetic variability between the continent and the islands, and a bottleneck analysis indicated recent sharp population declines in both archipelagos but not on the continent. Main conclusions Our study provides evidence that, in spite of significant differentiation, insular populations of highly mobile species may remain connected with the mainland. Conservation programmes should take into account population connectivity and integrate differentiated units of management within complex units of conservation that can best maintain processes and potential for evolutionary change.  相似文献   

8.
Capsule Blackcap Sylvia atricapilla populations from the Azores archipelago show morphological differences to continental birds which are consistent with the ‘Island Rule’.

Aims The morphology of insular vertebrates is usually the result of the evolution in their particular environment and leads to predictable morphological patterns, according to the Island Rule. We test the predictions of the Island Rule, using the Blackcap of the Azores archipelago as our model.

Methods We compared morphological variation (body size and wing shape) of populations from the nine islands of the Azores to continental birds, using multivariate indexes. Also, we looked at the relationship between these patterns and possible insular ecological drivers of morphological divergence.

Results Our findings are concordant with Island Rule predictions, as in general birds from the Azores are larger than continental populations, especially birds from the most distant islands. Wing shape also differs significantly, as Azorean Blackcaps tend to have rounder wings than continental birds with a migratory-like phenotype.

Conclusion Overall, we conclude that the observed morphological patterns in Blackcap in the Azores conform in general to the Island Rule predictions.  相似文献   

9.
The house mouse (Mus musculus domesticus), as a successful invasive species worldwide, has to forage a variety of resources. Subantarctic mice display among the most notable diet shift from the usual omnivorous–granivorous diet, relying on a larger proportion of terrestrial animal prey. In agreement, a recent study of their mandible morphology evidenced an evolution of their mandible shape to optimize incisor biting and hence seize preys. Here, the incisors themselves are the focus of a morphometric analysis combined with a 3D study of their internal structure, aiming at a comparison between subantarctic populations (Guillou island, Kerguelen archipelago) with a range of western European continental, commensal mice. The predatory foraging behavior of Guillou mice was indeed associated with a sharper bevel of the lower incisor, which appears as an efficient morphology for piercing prey. The incisor of these mice also displays a reduced pulp cavity, suggesting slower eruption counterbalancing a reduced abrasion on such soft food material. The dynamics of the ever‐growing incisor may thus allow adaptive incisor sculpting and participate to the success of mice in foraging diverse resources.  相似文献   

10.
Faroe house mice are a ‘classic’ system of rapid and dramatic morphological divergence highlighted by J. S. Huxley during the development of the Modern Synthesis. In the present study, we characterize these charismatic mice using modern molecular techniques, examining specimens from all Faroe islands occupied by mice. The aims were to classify the mice within the modern house mouse taxonomy (i.e. as either Mus musculus domesticus or Mus musculus musculus) using four molecular markers and a morphological feature, and to examine the genetic diversity and possible routes of colonization using mitochondrial (mt) control region DNA sequences and microsatellite data (15 loci). Mice on the most remote islands were characterized as M. m. domesticus and exhibited exceptionally low genetic diversity, whereas those on better connected islands were more genetically diverse and had both M. m. musculus and M. m. domesticus genetic elements, including one population which was morphologically M. m. musculus‐like. The mtDNA data indicate that the majority of the mice had their origins in south‐western Norway (or possibly southern Denmark/northern Germany), and probably arrived with the Vikings, earlier than suggested by Huxley. The M. m. musculus genetic component appears to derive from recent mouse immigration from Denmark. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 471–482.  相似文献   

11.

Aim

Oceanic islands possess unique floras with high proportions of endemic species. Island floras are expected to be severely affected by changing climatic conditions as species on islands have limited distribution ranges and small population sizes and face the constraints of insularity to track their climatic niches. We aimed to assess how ongoing climate change affects the range sizes of oceanic island plants, identifying species of particular conservation concern.

Location

Canary Islands, Spain.

Methods

We combined species occurrence data from single-island endemic, archipelago endemic and nonendemic native plant species of the Canary Islands with data on current and future climatic conditions. Bayesian Additive Regression Trees were used to assess the effect of climate change on species distributions; 71% (n = 502 species) of the native Canary Island species had models deemed good enough. To further assess how climate change affects plant functional strategies, we collected data on woodiness and succulence.

Results

Single-island endemic species were projected to lose a greater proportion of their climatically suitable area (x ̃ = −0.36) than archipelago endemics (x ̃ = −0.28) or nonendemic native species (x ̃ = −0.26), especially on Lanzarote and Fuerteventura, which are expected to experience less annual precipitation in the future. Moreover, herbaceous single-island endemics were projected to gain less and lose more climatically suitable area than insular woody single-island endemics. By contrast, we found that succulent single-island endemics and nonendemic natives gain more and lose less climatically suitable area.

Main Conclusions

While all native species are of conservation importance, we emphasise single-island endemic species not characterised by functional strategies associated with water use efficiency. Our results are particularly critical for other oceanic island floras that are not constituted by such a vast diversity of insular woody species as the Canary Islands.  相似文献   

12.
The diet of the house mouse (Mus musculus domesticus), introduced to the Kerguelen archipelago in the 1800s, was studied at monthly intervals from August 1997 to July 1998 in the closed communities of Acaena magellanica, the main habitat of mice on Guillou Island. The analysis of 291 stomach contents showed that this opportunistic rodent included a variety of items in its diet: earthworms (Dendrodrilus rubidus tenuis, Microscolex kerguelensis), caterpillars of a flightless moth (Pringleophaga kerguelensis), weevil adults and larvae (Ectemnorrhinus spp.), seeds of Acaena magellanica, and floral parts of dandelion (Taraxacum officinale). The animal prey were dominant in its diet all year round, except in summer. Based on the presence of chaetae in the stomach contents, our results show that earthworms are an important prey for the house mouse at Kerguelen. The consequences of these food habits for the invertebrate communities of the subantarctic islands are discussed.  相似文献   

13.
Aim  The aim of this paper is to investigate the causes of the current restricted distribution of a narrow-range endemic bird species, the Canary Islands stonechat, Saxicola dacotiae .
Location  Eastern islands of the Canary Islands archipelago.
Methods  We compared climatic patterns (temperature and rainfall), habitat and microhabitat structure, food availability during a full annual cycle, and the abundance of native avian competitors and predators inside and outside the species' range. Three study areas, located in similar habitats on nearby islands, were studied: northern Fuerteventura, close to the northern border of the species' range; southern Lanzarote, 22 km from the nearest site occupied by stonechats; and the Lobos islet, 10 km from the nearest occupied site and 2 km from the coast of Fuerteventura.
Results  The cover of suitable habitats (slopes with high cover of large shrubs, stony fields and ravines) and microhabitats (shrubs and boulders) and the abundance of arthropods during the breeding period of Canary Islands stonechats were lower outside than inside the species' range. Temperature, rainfall and the abundance of competitors and predators inside and outside the species' range did not differ significantly.
Main conclusions  Ecological requirements explaining the distribution of the Canary Islands stonechat within its range seem to be the main factor hindering its settlement on nearby islands. Geological and palaeoclimatic processes, as well as past and current human impact, could also have constrained the distribution of this narrow-range endemic bird species.  相似文献   

14.

Background  

Starting from Western Europe, the house mouse (Mus musculus domesticus) has spread across the globe in historic times. However, most oceanic islands were colonized by mice only within the past 300 years. This makes them an excellent model for studying the evolutionary processes during early stages of new colonization. We have focused here on the Kerguelen Archipelago, located within the sub-Antarctic area and compare the patterns with samples from other Southern Ocean islands.  相似文献   

15.
We investigated the phylogeography of Hegeter politus, a saprophagous, flightless darkling beetle endemic to the eastern Canary Islands, using a fragment of the mitochondrial COI gene. Distance and parsimony based gene trees of the mitotypes identified revealed a striking association between mitotype clades and sampling locations. The branching order of the clades suggested that the colonization of the islands by Hegeter politus proceeded from the southern part of Fuerteventura in a north-northeast direction to Lanzarote and the smaller islands. Based on this, a colonization scenario compatible with the reported geological ages and volcanisms of the various parts of the islands has been proposed. The high divergence of the beetles collected from the extreme south of Fuerteventura (the Jandía peninsula) from all other samples has led us to propose that they may be from a new species that has not been described previously. The ecological isolation of Jandía from the rest of Fuerteventura by the sand dunes that cover its narrow isthmus in the north, and the existence of many plant and animal endemisms unique to Jandía, lend supportive evidence to our proposal. The similarities between the evolution of island endemics in the Hawaiian and Canary archipelagos have been discussed. We conclude that many endemics in the Canary archipelago, like the Hawaiian Islands, are most likely to have originated from post-colonization differentiation and divergence.  相似文献   

16.
Following human occupation, the house mouse has colonised numerous islands, exposing the species to a wide variety of environments. Such a colonisation process, involving successive founder events and bottlenecks, may either promote random evolution or facilitate adaptation, making the relative importance of adaptive and stochastic processes in insular evolution difficult to assess. Here, we jointly analyse genetic and morphometric variation in the house mice (Mus musculus domesticus) from the Orkney archipelago. Genetic analyses, based on mitochondrial DNA and microsatellites, revealed considerable genetic structure within the archipelago, suggestive of a high degree of isolation and long-lasting stability of the insular populations. Morphometric analyses, based on a quantification of the shape of the first upper molar, revealed considerable differentiation compared to Western European populations, and significant geographic structure in Orkney, largely congruent with the pattern of genetic divergence. Morphological diversification in Orkney followed a Brownian motion model of evolution, suggesting a primary role for random drift over adaptation to local environments. Substantial structuring of human populations in Orkney has recently been demonstrated, mirroring the situation found here in house mice. This synanthropic species may thus constitute a bioproxy of human structure and practices even at a very local scale.Subject terms: Evolutionary ecology, Population genetics  相似文献   

17.
Aim To explore the determinants of island occupancy of 48 terrestrial bird species in an oceanic archipelago, accounting for ecological components while controlling for phylogenetic effects. Location The seven main islands of the Canary archipelago. Methods We obtained field data on population density, habitat breadth and landscape distribution in Tenerife, Fuerteventura and La Palma, aiming to sample all available habitats and the gradient of altitudes. In total, 1715 line transects of 0.5 km were carried out during the breeding season. We also reviewed the literature for data on occupancy, the distance between the Canary Islands and the nearest distribution border on the mainland, body size and endemicity of the 48 terrestrial bird species studied. Phylogenetic eigenvector regression was used to quantify (and to control for) the amount of phylogenetic signal. Results The two measurements of occupancy (number of occupied islands or 10 × 10 km UTM squares) were tightly correlated and produced very similar results. The occupancy of the terrestrial birds of the Canary Islands during the breeding season had a very low phylogenetic effect. Species with broader habitat breadth, stronger preferences for urban environments, smaller body size, and a lower degree of endemicity had a broader geographical distribution in the archipelago, occupying a larger number of islands and 10 × 10 UTM squares. Main conclusions The habitat‐generalist species with a tolerance for novel urban environments tend to be present on more islands and to occupy a greater area, whereas large‐sized species that are genetically differentiated within the islands are less widespread. Therefore, some properties of the ranges of these species are explicable from basic biological features. A positive relationship of range size with local abundance, previously shown in continental studies, was not found, probably because it relies on free dispersal on continuous landmasses, which may not be applicable on oceanic islands.  相似文献   

18.
This contribution aimed to predict the invasive Barbary ground squirrel (Atlantoxerus getulus) potentiality for invading the Canary Islands and western Mediterranean region, by determining firstly the climatic suitable areas in its native range and secondly, using presence data in the invaded range. Nineteen environmental variables submitted to a Principal Components Analysis selected those variables with higher factor loadings, which represent the main environmental conditions of the Northern African region (temperature in the coldest quarter, seasonal temperature, precipitation in the coldest quarter, temperature in the wettest quarter). After selecting hundred times more pseudo-absence points than presence observations (n = 6600 at a 0.083° resolution), Generalized Additive Models and Single-hidden-layer Neural Networks fitted in R were used to calibrate the model. Model results were extrapolated for the Canary Islands and the western Mediterranean region. In order to select between the two techniques, we calculated three accuracy measures (specificity, sensitivity and AUC) after using a Jack-knifing procedure and models were repeated ten times. The GAM model was less accurate than the NN model. Suitable areas did not have mean temperatures in the coldest quarter lower than −5°C and precipitation in the coldest quarter higher than 300 mm, respectively. We predicted favorable climatic areas across almost all the Maghreb, the European western Mediterranean region and in all the Canary Islands. Nevertheless, the seven islands differed significantly in the mean favorability scores, with El Hierro, Lanzarote and Gran Canaria being the most suitable. Same methodological analysis was applied to predict A. getulus distribution in other Canarian islands based on presence data from the invaded Fuerteventura. In this case, only Lanzarote and Gran Canaria appeared to be climatically suitable for the species. Our predictive model is an applicable tool to establish the invasive potential of A. getulus and to prioritize management strategies, within and outside the Canarian archipelago, to impede the expansion of this invasive squirrel out of Fuerteventura Island.  相似文献   

19.
Aim The presence of numerous reliable fossils and the occurrence of many endemic island species make the Boraginales particularly suitable for integrative biogeographical studies. In this paper we aim to elucidate the time frame and events associated with the origin of selected borages endemic to the Mediterranean climate zone. More specifically, we describe and examine the alternative palaeo‐ and neoendemic hypotheses for their origin. Location Corsica and Sardinia (continental fragment islands) and the Canary Islands (an oceanic island archipelago). Methods Eighty‐nine accessions, representing 30 genera from five families ascribed to the Boraginales, were examined for six chloroplast DNA regions. We used an integrative approach including phylogenetic analyses (Mr Bayes ), Bayesian molecular dating (T3 package) with four fossil constraints on nodes, and biogeographical reconstructions (diva ) to elucidate the temporal and spatial origins of the Corso‐Sardinian and Canary Island endemics. Results Species of Echium endemic to the Canary Islands diverged from their continental sister clade during the Miocene (15.3 ± 5.4 Ma), probably after the rise of the oldest islands (c. 20 Ma). Corso‐Sardinian endemics of Borago diverged from their primarily North African sister clade during the late Miocene‐Pliocene (c. 6.9 ± 3.6 Ma), well after the initial fragmentation of the islands (c. 30 Ma). Similarly, Corso‐Sardinian endemics of Anchusa diverged from the South African Anchusa capensis during the Pliocene–Pleistocene (c. 2.7 ± 2.1 Ma). Main conclusions The present study reveals an Anatolian origin for Anchusa, Borago and Echium and underlines the importance of the Eastern Mediterranean region as a possible reservoir for plant evolution in the Mediterranean Basin. For Anchusa and Borago, the divergence from their respective sister clades on the two types of islands post‐dated the formation of the islands, thus supporting the neo‐endemic hypothesis, whereas the dating results for the origin of Echium endemics were less conclusive.  相似文献   

20.
Humans have introduced many species onto remote oceanic islands. The house mouse (Mus musculus) is a human commensal and has consequently been transported to oceanic islands around the globe as an accidental stowaway. The history of these introductions can tell us not only about the mice themselves but also about the people that transported them. Following a phylogeographic approach, we used mitochondrial D‐loop sequence variation (within an 849‐ to 864‐bp fragment) to study house mouse colonization of the Azores. A total of 239 sequences were obtained from all nine islands, and interpretation was helped by previously published Iberian sequences and 66 newly generated Spanish sequences. A Bayesian analysis revealed presence in the Azores of most of the D‐loop clades previously described in the domesticus subspecies of the house mouse, suggesting a complex colonization history of the archipelago as a whole from multiple geographical origins, but much less heterogeneity (often single colonization?) within islands. The expected historical link with mainland Portugal was reflected in the pattern of D‐loop variation of some of the islands but not all. A more unexpected association with a distant North European source area was also detected in three islands, possibly reflecting human contact with the Azores prior to the 15th century discovery by Portuguese mariners. Widening the scope to colonization of the Macaronesian islands as a whole, human linkages between the Azores, Madeira, the Canaries, Portugal and Spain were revealed through the sharing of mouse sequences between these areas. From these and other data, we suggest mouse studies may help resolve historical uncertainties relating to the ‘Age of Discovery’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号