首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S T Ferreira 《Biochemistry》1989,28(26):10066-10072
The fluorescence properties of the single tryptophan residue in whiting parvalbumin were used to probe the dynamics of the protein matrix. Ca2+ binding caused a blue-shift in the emission (from lambda max = 339 to 315 nm) and a 2.5-fold increase in quantum yield. The fluorescence decay was nonexponential in both Ca2(+)-free and Ca2(+)-bound parvalbumin and was best described by Lorentzian lifetime distributions centered around two components: a major long-lived component at 2-5 ns and a small subnanosecond component. Raising the temperature from 8 to 45 degrees C resulted in a decrease in both the center (average) and width (dispersion) of the major lifetime distribution component, whereas the center, width, and fractional intensity of the fast component increased with temperature. Arrhenius activation energies of 1.3 and 0.3 kcal/mol were obtained in the absence and in the presence of Ca2+, respectively, from the temperature dependence of the center of the major lifetime distribution component. Direct anisotropy decay measurements of local tryptophan rotations yielded an activation energy of 2.3 kcal/mol in Ca2(+)-depleted parvalbumin and indicated a correlation between rotational rates and lifetime distribution parameters (center and width). Ca2+ binding produced a decrease in the width of the major lifetime distribution component and a decrease in tryptophan rotational mobility within the protein. There was a rough correlation between these two parameters with changes in Ca2+ and temperature, so that both measurements may be taken to indicate that the structure of Ca2(+)-bound parvalbumin was more rigid than in Ca2(+)-depleted parvalbumin.  相似文献   

2.
3.
Single-chain monellin (SCM), which is an engineered 94-residue polypeptide, has been characterized as being as sweet as native two-chain monellin. Data from gel-filtration high performance liquid chromatography and NMR has proven that SCM exists as a monomer in aqueous solution. In order to determine the structural origin of the taste of sweetness, we engineered several mutant SCM proteins by mutating Glu(2), Asp(7), and Arg(39) residues, which are responsible for sweetness. In this study, we present the solution structure, backbone dynamics, and stability of mutant SCM proteins using circular dichroism, fluorescence, and NMR spectroscopy. Based on the NMR data, a stable alpha-helix and five-stranded antiparallel beta-sheet were identified for double mutant SCM. Strands beta1 and beta2 are connected by a small bulge, and the disruption of the first beta-strand were observed with SCM(DR) comprising residues of Ile(38)-Cys(41). The dynamical and folding characteristics from circular dichroism, fluorescence, and backbone dynamics studies revealed that both wild type and mutant proteins showed distinct dynamical as well as stability differences, suggesting the important role of mutated residues in the sweet taste of SCM. Our results will provide an insight into the structural origin of sweet taste as well as the mutational effect in the stability of the engineered sweet protein SCM.  相似文献   

4.
The 3D structure of methanogen chromosomal protein 1 (MC1), determined with heteronuclear NMR methods, agrees with its function in terms of the shape and nature of the binding surface, whereas the 3D structure determined with homonuclear NMR does not. The structure features five loops, which show a large distribution in the ensemble of 3D structures. Evidence for the fact that this distribution signifies internal mobility on the nanosecond time scale was provided by using (15)N-relaxation and molecular dynamics simulations. Structural variations of the arm (11 residues) induced large shape anisotropy variations on the nanosecond time scale that ruled out the use of the model-free formalism to analyze the relaxation data. The backbone dynamics analysis of MC1 was achieved by comparison with 20 ns molecular dynamics trajectories. Two β-bulges showed that hydrogen bond formation correlated with ? and ψ dihedral angle transitions. These jumps were observed on the nanosecond time scale, in agreement with a large decrease in (15)N-NOE for Gly17 and Ile89. One water molecule bridging NH(Glu87) and CO(Val57) through hydrogen bonding contributed to these dynamics. Nanosecond slow motions observed in loops LP3 (35-42) and LP5 (67-77) reflected the lack of stable hydrogen bonds, whereas the other loops, LP1 (10-14), LP2 (22-24), and LP4 (50-53), were stabilized by several hydrogen bonds. Dynamics are often directly related to function. Our data strongly suggest that residues belonging to the flexible regions of MC1 could be involved in the interaction with DNA.  相似文献   

5.
Structure and backbone dynamics of Apo-CBFbeta in solution   总被引:1,自引:0,他引:1  
Wolf-Watz M  Grundström T  Härd T 《Biochemistry》2001,40(38):11423-11432
  相似文献   

6.
Tyler R  Pelczer I  Carey J  Copié V 《Biochemistry》2002,41(40):11954-11962
L75F-TrpR is a temperature-sensitive mutant of the tryptophan repressor protein of Escherichia coli in which surface-exposed residue leucine 75 in the DNA binding domain is replaced with phenylalanine. Biochemical and biophysical studies had suggested global alterations in dynamics for L75F-TrpR, although the structure was apparently similar to that of wild-type TrpR. Herein, we report the three-dimensional solution structure of apo-L75F-TrpR determined by multidimensional ((1)H, (15)N, and (13)C) solution NMR spectroscopy. An ensemble of structures was generated from 769 unique NOE-based distance restraints, 68 dihedral angle restraints, and 62 hydrogen bond distance restraints. Apo-L75F-TrpR exhibits a three-dimensional (3D) fold very similar to that of apo-WT-TrpR, with a dimeric core of four alpha-helices (A-C and F) from each subunit, and less well-defined D and E helical regions of the DNA binding domains. Despite their many similarities, wild-type and mutant proteins display significant chemical shift differences, one cluster of which is in the B-C turn, too distant to be ascribed solely to ring current effects from Phe75. Differences in NOE patterns and amide proton exchange rates are also observed in the B-C turn region. The data provide evidence that this point mutation exerts local effects on structure and stability in the DNA binding domain, and propagates long-range effects through the tertiary structure.  相似文献   

7.
How is the native structure encoded in the amino acid sequence? For the traditional backbone centric view, the dominant forces are hydrogen bonds (backbone) and phi-psi propensity. The role of hydrophobicity is non-specific. For the side-chain centric view, the dominant force of protein folding is hydrophobicity. In order to understand the balance between backbone and side-chain forces, we have studied the contributions of three components of a beta-hairpin peptide: turn, backbone hydrogen bonding and side-chain interactions, of a 16-residue fragment of protein G. The peptide folds rapidly and cooperatively to a conformation with a defined secondary structure and a packed hydrophobic cluster of aromatic side-chains. Our strategy is to observe the structural stability of the beta-hairpin under systematic perturbations of the turn region, backbone hydrogen bonds and the hydrophobic core formed by the side-chains, respectively. In our molecular dynamics simulations, the peptides are solvated. with explicit water molecules, and an all-atom force field (CFF91) is used. Starting from the original peptide (G41EWTYDDATKTFTVTE56), we carried out the following MD simulations. (1) unfolding at 350 K; (2) forcing the distance between the C(alpha) atoms of ASP47 and LYS50 to be 8 A; (3) deleting two turn residues (Ala48 and Thr49) to form a beta-sheet complex of two short peptides, GEWTYDD and KTFTVTE; (4) four hydrophobic residues (W43, Y45, F52 and T53) are replaced by a glycine residue step-by-step; and (5) most importantly, four amide hydrogen atoms (T44, D46, T53, and T55, which are crucial for backbone hydrogen bonding), are substituted by fluorine atoms. The fluorination not only makes it impossible to form attractive hydrogen bonding between the two beta-hairpin strands, but also introduces a repulsive force between the two strands due to the negative charges on the fluorine and oxygen atoms. Throughout all simulations, we observe that backbone hydrogen bonds are very sensitive to the perturbations and are easily broken. In contrast, the hydrophobic core survives most perturbations. In the decisive test of fluorination, the fluorinated peptide remains folded under our simulation conditions (5 ns, 278 K). Hydrophobic interactions keep the peptide folded, even with a repulsive force between the beta-strands. Thus, our results strongly support a side-chain centric view for protein folding.  相似文献   

8.
NMR solution structure and backbone dynamics of the CC chemokine eotaxin-3.   总被引:1,自引:0,他引:1  
J Ye  K L Mayer  M R Mayer  M J Stone 《Biochemistry》2001,40(26):7820-7831
Eotaxin-3 is one of three related chemokines that specifically activate chemokine receptor CCR3. We report the 3D structure and backbone dynamics of eotaxin-3 determined by NMR spectroscopy. Eotaxin-3 is monomeric under the conditions in this study and consists of an unstructured N-terminus before the first two conserved cysteine residues, an irregularly structured N-loop following the second conserved cysteine, a single turn of 3(10)-helix, a three-stranded antiparallel beta-sheet, an alpha-helix, and an unstructured C-terminal tail. As in other chemokines, the alpha-helix packs against one face of the beta-sheet. The average backbone and heavy atom rmsd values of the 20 structures (residues 9-65) are 0.44 and 1.01 A, respectively. A comparison between the structures of eotaxin-3 and related chemokines suggests that the electrostatic potential in the vicinity of a surface groove and the structure of the beta2-beta3 turn may be important for maintaining receptor specificity. The backbone dynamics of eotaxin-3 were determined from 15N NMR relaxation data using the extended model free dynamics formalism. Large amplitude motions on the picosecond to nanosecond time scale were observed in both termini and in some residues in the N-loop, the beta1-beta2 turn, and the beta3 strand; the location of these residues suggests a possible role for dynamics in receptor binding and activation. In contrast to eotaxin, eotaxin-3 exhibits no substantial mobility on the microsecond to millisecond time scale.  相似文献   

9.
We report tryptophan fluorescence measurements of emission intensity, iodide quenching, and anisotropy that describe the environment and dynamics at X and Y sites in stable collagen-like peptides of sequence (Gly-X-Y)(n). About 90% of tryptophans at both sites have similar solvent exposed fluorescence properties and a lifetime of 8.5-9 ns. Analysis of anisotropy decays using an associative model indicates that these long lifetime populations undergo rapid depolarizing motion with a 0.5 ns correlation time; however, the extent of fast motion at the Y site is considerably less than the essentially unrestricted motion at the X site. About 10% of tryptophans at both sites have a shorter ( approximately 3 ns) lifetime indicating proximity to a protein quenching group; these minor populations are immobile on the peptide surface, depolarizing only by overall trimer rotation. Iodide quenching indicates that tryptophans at the X site are more accessible to solvent. Side chains at X sites are more solvent accessible and considerably more mobile than residues at Y sites and can more readily fluctuate among alternate intermolecular interactions in collagen fibrils. This fluorescence analysis of collagen-like peptides lays a foundation for studies on the structure, dynamics, and function of collagen and of triple-helical junctions in gelatin gels.  相似文献   

10.
The basic differences between the 20 natural amino acid residues are due to differences in their side-chain structures. This characteristic design of protein building blocks implies that side-chain-side-chain interactions play an important, even dominant role in 3D-structural realization of amino acid codes. Here we present the results of a comparative analysis of the contributions of side-chain-side-chain (s-s) and side-chain-backbone (s-b) interactions to the stabilization of folded protein structures within the framework of the CHARMm molecular data model. Contrary to intuition, our results suggest that side-chain-backbone interactions play the major role in side-chain packing, in stabilizing the folded structures, and in differentiating the folded structures from the unfolded or misfolded structures, while the interactions between side chains have a secondary effect. An additional analysis of electrostatic energies suggests that combinatorial dominance of the interactions between opposite charges makes the electrostatic interactions act as an unspecific folding force that stabilizes not only native structure, but also compact random conformations. This observation is in agreement with experimental findings that, in the denatured state, the charge-charge interactions stabilize more compact conformations. Taking advantage of the dominant role of side-chain-backbone interactions in side-chain packing to reduce the combinatorial problem, we developed a new algorithm, ChiRotor, for rapid prediction of side-chain conformations. We present the results of a validation study of the method based on a set of high resolution X-ray structures.  相似文献   

11.
Vertebrate odorant-binding proteins (OBPs) are small extracellular proteins belonging to the lipocalin superfamily. They have been supposed to play a role in events of odorant molecules detection by carrying, deactivating, and/or selecting odorant molecules. The OBPs share a conserved folding pattern, an eight-stranded beta-barrel flanked by an alpha-helix at the C-terminal end of the polypeptide chain. The beta-barrel creates a central nonpolar cavity whose role is to bind and transport hydrophobic odorant molecules. These proteins reversibly bind odorant molecules with dissociation constants ranging from nanomolar to micromolar range. In this work, we have studied the structural features of the OBP from pig and from cow by phosphorescence spectroscopy. The obtained results demonstrate that the indolic phosphorescence of the two studied proteins can be readily detected at ambient temperature solutions and that it is owed exclusively to the internal tryptophan residue located next to the ligand binding cavity, which is generally conserved in the mammalian OBPs. In addition, while both the phosphorescence spectrum and the lifetime yield a picture of the fold of the studied protein in good agreement with the protein crystallographic structures, the triplet probe points out that in solution the polypeptide structure of the both investigated OBPs exists as a multiplicity of slowly interconverting protein conformations. Finally, this work also demonstrates that it is possible to directly detect the binding of the ligands to OBPs as variations of the protein luminescence features, thus, representing the very first observation reported in the literature so far that a fast and direct assay can be used for monitoring the binding of ligands to OBPs.  相似文献   

12.
4-Oxalocrotonate tautomerase (4-OT), a homohexamer consisting of 62 residues per subunit, catalyzes the isomerization of unsaturated alpha-keto acids using Pro-1 as a general base (Stivers et al., 1996a, 1996b). We report the backbone and side-chain 1H, 15N, and 13C NMR assignments and the solution secondary structure for 4-OT using 2D and 3D homonuclear and heteronuclear NMR methods. The subunit secondary structure consists of an alpha-helix (residues 13-30), two beta-strands (beta 1, residues 2-8; beta 2, residues 39-45), a beta-hairpin (residues 50-57), two loops (I, residues 9-12; II, 34-38), and two turns (I, residues 30-33; II, 47-50). The remaining residues form coils. The beta 1 strand is parallel to the beta 2 strand of the same subunit on the basis of cross stand NH(i)-NH(j) NOEs in a 2D 15N-edited 1H-NOESY spectrum of hexameric 4-OT containing two 15N-labeled subunits/hexamer. The beta 1 strand is also antiparallel to another beta 1 strand from an adjacent subunit forming a subunit interface. Because only three such pairwise interactions are possible, the hexamer is a trimer of dimers. The diffusion constant, determined by dynamic light scattering, and the rotational correlation time (14.5 ns) estimated from 15N T1/T2 measurements, are consistent with the hexameric molecular weight of 41 kDa. Residue Phe-50 is in the active site on the basis of transferred NOEs to the bound partial substrate 2-oxo-1,6-hexanedioate. Modification of the general base, Pro-1, with the active site-directed irreversible inhibitor, 3-bromopyruvate, significantly alters the amide 15N and NH chemical shifts of residues in the beta-hairpin and in loop II, providing evidence that these regions change conformation when the active site is occupied.  相似文献   

13.
The fluorescence emission of the single tryptophan (W233) of the mutant protein DD-carboxypeptidase from streptomyces is characterized by a red-edge excitation shift (REES), i.e., the phenomenon that the wavelength of maximum emission depends on the excitation wavelength. This phenomenon is an indication for a strongly reduced dynamic environment of the single tryptophan, which has a very low accessibility to the solvent. The REES shows, however, an unusual temperature and time dependence. This, together with the fluorescence lifetime analysis, showing three resolvable lifetimes, can be explained by the presence of three rotameric states that can be identified using the Dead-End Elimination method. The three individual lifetimes increase with increasing emission wavelength, indicating the presence of restricted protein dynamics within the rotameric states. This is confirmed by time-resolved anisotropy measurements that show dynamics within the rotamers but not among the rotamers. The global picture is that of a protein with a single buried tryptophan showing strongly restricted dynamics within three distinct rotameric states with different emission spectra and an anisotropic environment.  相似文献   

14.
Sugar-phosphate backbone conformations are an important structural element for a complete understanding of specific recognition in nucleic acid-protein interactions. They can be involved both in early stages of target discrimination and in structural adaptation upon binding. In the first part of this study, we have analyzed high-resolution structures of double-stranded B-DNA either isolated or bound to proteins, and explored the impact of both the standard BI and the unusual BII phosphate backbone conformations on neighboring sugar puckers and on selected helical parameters. Correlations are found to be similar for free and bound DNA, and in both categories, the possible facing backbone conformations (BI.BI, BI.BII, and BII.BII) define well-characterized substates in the B-DNA conformational space. Notably, BII.BII steps are characterized by specific, and sequence-independent, structural effects involving reduced standard deviations for almost all conformational parameters. In the second part of this work, we analyze four 10 ns molecular dynamics simulations in explicit solvent on the DNA targets of NF-kappaB and bovine papillomavirus E2 proteins, highlighting the multiplicity of backbone dynamical behavior. These results show sequence effects on the percentages of BI and BII conformers, the preferential state of facing backbones, the occurrence of coupled transitions. The backbone states can consequently be seen as a mechanism for transmitting information from the bases to the phosphate groups and thus for modulating the overall structural properties of the target DNA.  相似文献   

15.
Williams C  Galyov EE  Bagby S 《Biochemistry》2004,43(38):11998-12008
SopE and SopE2 are delivered by the Salmonella type III secretion system into eukaryotic cells to promote cell invasion. SopE and SopE2 are potent guanine nucleotide exchange factors (GEFs) for Rho GTPases Cdc42 and Rac1 and constitute a novel class of Rho GEFs. Although the sequence of SopE-like GEFs is not at all homologous to those of the Dbl homology domain-containing eukaryotic GEFs, the mechanism of nucleotide release seems to have significant similarities. We have determined the solution structure of the catalytic domain (residues 69-240) of SopE2, showing that SopE2(69-240) comprises two three-helix bundles (alpha1alpha4alpha5 and alpha2alpha3alpha6) arranged in a Lambda shape. Compared to the crystal structure of SopE(78-240) in complex with Cdc42, SopE2(69-240) exhibits a less open Lambda shape due to movement of SopE(78-240) helices alpha2 and alpha5 to accommodate binding to the Cdc42 switch regions. In an NMR titration to investigate the SopE2(69-240)-Cdc42 interaction, the SopE2(69-240) residues affected by binding Cdc42 were very similar to the SopE(78-240) residues that contact Cdc42 in the SopE(78-240)-Cdc42 complex. Analysis of the backbone (15)N dynamics of SopE2(69-240) revealed flexibility in residues that link the two three-helix bundles, including the alpha3-alpha4 linker that incorporates a beta-hairpin and the catalytic loop, and the alpha5-alpha6 loop, and flexibility in residues involved in interaction with Cdc42. Together, these observations provide experimental evidence of a previously proposed mechanism of GEF-mediated nucleotide exchange based on the Rac1-Tiam1 complex structure, with SopE/E2 flexibility, particularly in the interbundle loops, enabling conformational rearrangements of the nucleotide binding region of Cdc42 through an induced fit type of binding. Such flexibility in SopE/E2 may also facilitate interaction through adaptive binding with alternative target proteins such as Rab5, allograft inflammatory factor 1, and apolipoprotein A-1.  相似文献   

16.
XPA is involved in the damage recognition step of nucleotide excision repair (NER). XPA binds to other repair factors, and acts as a key element in NER complex formation. The central domain of human repair factor XPA (residues Met98 to Phe219) is responsible for the preferential binding to damaged DNA and to replication protein A (RPA). The domain consists of a zinc-containing subdomain with a compact globular structure and a C-terminal subdomain with a positively charged cleft in a novel alpha/beta structure. The resonance assignments and backbone dynamics of the central domain of human XPA were studied by multidimensional heteronuclear NMR methods. 15N relaxation data were obtained at two static magnetic fields, and analyzed by means of the model-free formalism under the assumption of isotropic or anisotropic rotational diffusion. In addition, exchange contributions were estimated by analysis of the spectral density function at zero frequency. The results show that the domain exhibits a rotational diffusion anisotropy (Dparallel/Dperpendicular) of 1.38, and that most of the flexible regions exist on the DNA binding surface in the cleft in the C-terminal subdomain. This flexibility may be involved in the interactions of XPA with various kinds of damaged DNA.  相似文献   

17.
The human synuclein protein family includes alpha-synuclein, which has been linked to both familial and sporadic Parkinson's disease, and the highly homologous beta and gamma-synuclein. Mutations in alpha-synuclein cause autosomal dominant early onset Parkinson's, and the protein is found deposited in a fibrillar form in hereditary and idiopathic forms of the disease. No genetic link between beta and gamma-synuclein, and any neurodegenerative disease has been established, and it is generally considered that these proteins are not highly pathogenic. In addition, beta and gamma-synuclein are reported to aggregate less readily than alpha-synuclein in vitro. Indeed, beta-synuclein has been reported to protect against alpha-synuclein aggregation in vitro, as well as alpha-synuclein-mediated toxicity in vivo. Earlier, we compared the structural properties of the highly helical states adopted by all three synucleins in association with detergent micelles in an attempt to delineate the basis for functional differences between the three proteins. Here, we report a comparison of the structural and dynamic properties of the free states of all three proteins in order to shed light on differences that may help to explain their different propensities to aggregate, which in turn may underlie their differing contributions to the etiology of Parkinson's disease. We find that gamma-synuclein closely resembles alpha-synuclein in its free-state residual secondary structure, consistent with the more similar propensities of the two proteins to aggregate in vitro. beta-Synuclein, however, differs significantly from alpha-synuclein, exhibiting a lower predisposition towards helical structure in the second half of its lipid-binding domain, and a higher preference for extended structures in its C-terminal tail. Both beta and gamma-synuclein show less extensive transient long-range structure than that observed in alpha-synuclein. These results raise questions regarding the role of secondary structure propensities and transient long-range contacts in directing synuclein aggregation reactions.  相似文献   

18.
Solution structure and backbone dynamics of an omega-conotoxin precursor   总被引:1,自引:0,他引:1  
Nuclear magnetic resonance spectroscopy was used to characterize the solution structure and backbone dynamics of a putative precursor form of omega-conotoxin MVIIA, a 25-amino-acid residue peptide antagonist of voltage-gated Ca(2+) channels. The mature peptide is found in the venom of a fish-hunting marine snail Conus magus and contains an amidated carboxyl terminus that is generated by oxidative cleavage of a Gly residue. The form examined in this study is identical to the mature peptide except for the presence of the unmodified carboxy-terminal Gly. This form, referred to as omega-MVIIA-Gly, has previously been shown to refold and form its disulfides more efficiently than the mature form, suggesting that the presence of the terminal Gly may favor folding in vivo. The nuclear magnetic resonance (NMR) structure determination indicated that the fold of omega-MVIIA-Gly is very similar to that previously determined for the mature form, but revealed that the terminal Gly residue participates in a network of hydrogen bonds involving both backbone and side chain atoms, very likely accounting for the enhanced stability and folding efficiency. (15)N relaxation experiments indicated that the backbone is well ordered on the nanosecond time scale but that residues 9-15 undergo a conformational exchange processes with a time constant of approximately 35 microseconds. Other studies have implicated this segment in the binding of the peptide to its physiological target, and the observed motions may play a role in allowing the peptide to enter the binding site  相似文献   

19.
Retinoid-binding proteins play an important role in regulating transport, storage, and metabolism of vitamin A and its derivatives. The solution structure and backbone dynamics of rat cellular retinol-binding protein type I (CRBP) in the apo- and holo-form have been determined and compared using multidimensional high resolution NMR spectroscopy. The global fold of the protein is consistent with the common motif described for members of the intracellular lipid-binding protein family. The most relevant difference between the NMR structure ensembles of apo- and holoCRBP is the higher backbone disorder, in the ligand-free form, of some segments that frame the putative entrance to the ligand-binding site. These comprise alpha-helix II, the subsequent linker to beta-strand B, the hairpin turn between beta-strands C and D, and the betaE-betaF turn. The internal backbone dynamics, obtained from 15N relaxation data (T1, T2, and heteronuclear nuclear Overhauser effect) at two different fields, indicate several regions with significantly higher backbone mobility in the apoprotein, including the betaC-betaD and betaE-betaF turns. Although apoCRBP contains a binding cavity more shielded than that of any other retinoid carrier, conformational flexibility in the portal region may assist retinol uptake. The stiffening of the backbone in the holoprotein guarantees the stability of the complex during retinol transport and suggests that targeted retinol release requires a transiently open state that is likely to be promoted by the acceptor or the local environment.  相似文献   

20.
The tertiary structure and backbone dynamics of human prolactin   总被引:3,自引:0,他引:3  
Human prolactin is a 199-residue (23 kDa) protein closely related to growth hormone and placental lactogen with properties and functions resembling both a hormone and a cytokine. As a traditional hormone, prolactin is produced by lactotrophic cells in the pituitary and secreted into the bloodstream where it acts distally to regulate reproduction and promote lactation. Pituitary cells store prolactin in secretory granules organized around large prolactin aggregates, which are produced within the trans layer of the Golgi complex. Extrapituitary prolactin is synthesized by a wide variety of cells but is not stored in secretory granules. Extrapituitary prolactin displays immunomodulatory activities and acts as a growth factor for cancers of the breast, prostate and tissues of the female reproductive system. We have determined the tertiary structure of human prolactin using three-dimensional (3D) and four-dimensional (4D) heteronuclear NMR spectroscopy. As expected, prolactin adopts an "up-up-down-down" four-helical bundle topology and resembles other members of the family of hematopoietic cytokines. Prolactin displays three discrete structural differences from growth hormone: (1) a structured N-terminal loop in contact with the first helix, (2) a missing mini-helix in the loop between the first and second helices, and (3) a shorter loop between the second and third helices lacking the perpendicular mini-helix observed in growth hormone. Residues necessary for functional binding to the prolactin receptor are clustered on the prolactin surface in a position similar to growth hormone. The backbone dynamics of prolactin were investigated by analysis of 15N NMR relaxation phenomena and demonstrated a rigid four-helical bundle with relatively mobile interconnecting loops. Comparison of global macromolecular tumbling at 0.1mM and 1.0mM prolactin revealed reversible oligomerization, which was correlated to dynamic light scattering experiments. The existence of a reversible oligomerization reaction in solution provides insight into previous results describing the in vitro and in vivo aggregation properties of human prolactin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号