首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.  The δ13C and δ15N signatures of zooplankton vary with dissolved organic carbon (DOC), but inconsistent and limited taxonomic resolution of previous studies have masked differences that may exist among orders, genera or species and are attributable to dietary and/or habitat differences. Here we investigate differences among the isotopic signatures of five zooplankton taxa ( Daphnia , Holopedium , large Calanoida, small Calanoida and Cyclopoida) in Precambrian shield lakes with a sixfold range of DOC concentration.
2.  δ13C signatures of Daphnia , small calanoids and large calanoids became more depleted with increasing lake DOC, whereas Holopedium and cyclopoid δ13C became enriched with increasing DOC concentration.
3.  The variability of δ13C and δ15N isotopic signatures among zooplankton groups was reduced in high-DOC, compared to low-DOC lakes, especially for δ13C. Differences in δ13C and POM-corrected δ15N accounted for up to 33.7% and 19.5% of the variance, respectively, among lakes of varying DOC concentration.
4.  The narrow range of signatures found in higher DOC lakes suggests that different taxa have similar food sources and/or habitats. In contrast, the wide range of signatures in low-DOC lakes suggests that different taxa are exploiting different food sources and/or habitats. Together with the variable trends in zooplankton isotopic signatures along our DOC gradient, these results suggest that food web dynamics within the zooplankton community of temperate lakes will change as climate and lake DOC concentrations change.  相似文献   

2.
To assess and study the heterogeneity of δ13C values for seep microorganisms of the Eel River Basin, we studied two principally different sample sets: sediments from push cores and artificial surfaces colonized over a 14 month in situ incubation. In a single sediment core, the δ13C compositions of methane seep-associated microorganisms were measured and the relative activity of several metabolisms was determined using radiotracers. We observed a large range of archaeal δ13C values (> 50‰) in this microbial community. The δ13C of ANME-1 rods ranged from −24‰ to −87‰. The δ13C of ANME-2 sarcina ranged from −18‰ to −75‰. Initial measurements of shell aggregates were as heavy as −19.5‰ with none observed to be lighter than −57‰. Subsequent measurements on shell aggregates trended lighter reaching values as 13C-depleted as −73‰. The observed isotopic trends found for mixed aggregates were similar to those found for shell aggregates in that the initial measurements were often enriched and the subsequent analyses were more 13C-depleted (with values as light as −56‰). The isotopic heterogeneity and trends observed within taxonomic groups suggest that ANME-1 and ANME-2 sarcina are capable of both methanogenesis and methanotrophy. In situ microbial growth was investigated by incubating a series of slides and silicon (Si) wafers for 14 months in seep sediment. The experiment showed ubiquitous growth of bacterial filaments (mean δ13C = −38 ± 3‰), suggesting that this bacterial morphotype was capable of rapid colonization and growth.  相似文献   

3.
Isotopic labelling experiments were conducted to assess relationships among 13C of recently assimilated carbon ( δC A), foliage respiration ( δC F), soluble carbohydrate ( δC SC), leaf waxes ( δC LW) and bulk organic matter ( δC OM). Slash pine, sweetgum and maize were grown under 13C depleted CO2 to label biomass and then placed under ambient conditions to monitor the loss of label. In pine and sweetgum, δC F of labelled plants (∼−44 and −35‰, respectively) rapidly approached control values but remained depleted by ∼4–6‰ after 3–4 months. For these tree species, no or minimal label was lost from δC SC, δC LW and δC OM during the observation periods. δC F and δC SC of labelled maize plants rapidly changed and were indistinguishable from controls after 1 month, while δC LW and δC OM more slowly approached control values and remained depleted by 2–6‰. Changes in δC F in slash pine and sweetgum fit a two-pool exponential model, with the fast turnover metabolic pool (∼3–4 d half-life) constituting only 1–2% of the total. In maize, change in δC F fits a single pool model with a half-life of 6.4 d. The 13C of foliage respiration and biochemical pools reflect temporally integrated values of δC A, with change in isotopic composition dampened by the size of metabolic carbon reserves and turnover rates.  相似文献   

4.
We evaluated diurnal and seasonal patterns of carbon isotope composition of leaf dark-respired CO2 ( δ 13Cl) in the C3 perennial shrub velvet mesquite ( Prosopis velutina ) across flood plain and upland savanna ecosystems in the south-western USA. δ 13Cl of darkened leaves increased to maximum values late during daytime periods and declined gradually over night-time periods to minimum values at pre-dawn. The magnitude of the diurnal shift in δ 13Cl was strongly influenced by seasonal and habitat-related differences in soil water availability and leaf surface vapour pressure deficit. δ 13Cl and the cumulative flux-weighted δ 13C value of photosynthates were positively correlated, suggesting that progressive 13C enrichment of the CO2 evolved by darkened leaves during the daytime mainly resulted from short-term changes in photosynthetic 13C discrimination and associated shifts in the δ 13C signature of primary respiratory substrates. The 13C enrichment of dark-respired CO2 relative to photosynthates across habitats and seasons was 4 to 6‰ at the end of the daytime period (1800 h), but progressively declined to 0‰ by pre-dawn (0300 h). The origin of night-time and daytime variations in δ 13Cl is discussed in terms of the carbon source(s) feeding respiration and the drought-induced changes in carbon metabolism.  相似文献   

5.
1. Food sources and trophic structure of the macroinvertebrate community along a longitudinal gradient were examined in a glacier stream of the Swiss Alps (Val Roseg). Analysis of multiple stable isotopes (δ13C and δ15N) and measurement of C : N ratios were used to differentiate between allochthonous and autochthonous organic matter.
2. Although isotopic signatures of algae varied widely among sites and dates, it was possible to discriminate between allochthonous and autochthonous food sources using a site-specific approach.
3. Dominant food sources of herbivorous invertebrates in all main channel sites were epilithic diatoms and the filamentous gold alga Hydrurus foetidus . Allochthonous organic matter was of some importance only in a groundwater-fed stream close to the floodplain margin.
4. Seasonal changes in the δ13C signature of the macroinvertebrates corresponded with seasonal changes in δ13C of the gold alga H. foetidus . This indicated that the energy base remains autochthonous throughout the year.
5. Because of limited food sources, feeding plasticity of the invertebrate community was high. Both grazers and shredders fed predominantly on algae, whereas gatherer-collectors seemed to be omnivorous.
6. The overall enrichment of δ15N was 2.25‰ ( r 2=0.99) per trophic level. On a gradient from the glacier site to a downstream forested site trophic enrichment was constant but variation in δ15N within trophic levels decreased.  相似文献   

6.
1. Stable isotope analysis, coupled with dietary data from the literature, was used to investigate trophic patterns of freshwater fauna in a tropical stream food web (Guadeloupe, French West Indies).
2. Primary producers (biofilm, algae and plant detritus of terrestrial origin) showed distinct δ13C signatures, which allowed for a powerful discrimination of carbon sources. Both autochthonous (13C-enriched signatures) and allochthonous (13C-depleted signatures) resources enter the food web. The migrating behaviour of fishes and shrimps between marine and freshwater during their life cycles can be followed by carbon isotopes. Here, shrimp δ13C signatures were shown to shift from −16‰ (for juveniles under marine influence) to −24.7‰ (for adults in freshwater habitats). For resident species, δ13C values partly reflected the species' habitat preferences along the river continuum : species living in river mouths were 13C-enriched in comparison with those collected upstream.
3. Nitrogen isotopic ratios were also discriminating and defined three main trophic guilds among consumers. The δ15N values of herbivores/detritivores were 5.0–8.4‰, omnivores 8.8–10.2‰ and carnivores 11–12.7‰.
4. Mixing model equations were employed to calculate the possible range of contribution made by respective food sources to the diet of each species. The results revealed the importance of omnivorous species and the dependence of riverine biota on terrestrial subsidies, such as leaf detritus and fruits. Finally, the abundance of shrimps and their feeding habits placed in relief their key role in tropical freshwater food webs. Isotopic analysis provides a useful tool for assessing animal feeding patterns.  相似文献   

7.
Abstract. In the marine environment, the range of values of carbon isotope fractionation between particulate tissue of phytoplankton and inorganic carbon can be more than 20‰ (− 35‰ < δ13C < − 14‰). This review considers the influence of seawater temperature, lipid content of phytoplanktonic cells, kinetic fractionation, and carbon pathway on δ13C values observed at sea.
In order to study the contribution of carboxylases (RUBISCO and the β-carboxylases phosphoenolpyruvate carboxylase, phosphoenoplpyruvate carboxykinase and pyruvate carboxylase) to variations of particulate δ13C values at sea, we present results obtained simultenously on carboxylase activities and δ13C in various environmental conditions. The lowest δ13C values are clearly associated with predominance of ribulose-1.5-bisphosphate carboxylase activity, but it was more difficult to explain the high δ13C values. Different hypotheses are discussed.  相似文献   

8.
The natural abundance of 13C and 15N was measured in basidiocarps of at least 115 species in 88 genera of ectomycorrhizal, wood-decomposing and litter-decomposing fungi from Japan and Malaysia. The natural abundance of 13C and 15N was also measured in leaves, litter, soil and wood from three different sites. 15N and 13C were enriched in ectomycorrhizal and wood-decomposing fungi, respectively, relative to their substrates. Ectomycorrhizal and wood-decomposing fungi could be distinguished on the basis of their δ13C and δ15N signatures. Although there was high variability in the isotopic composition of fungi, the following isotope- enrichment factors (ε, mean±SD) of the fungi relative to substrates were observed:
εectomycorrhizal fungi/litter = 6.1±0.4‰15N
εectomycorrhizal fungi/wood = 1.4±0.8‰13C
εwood-decomposing fungi/wood = −0.6±0.7‰15N
εwood-decomposing fungi/wood = 3.5±0.9‰13C
The basis of isotope fractionation in C metabolism from wood to wood-decomposing fungus is discussed.  相似文献   

9.
Stable carbon (δ13C) and nitrogen (δ15N) isotopes were employed to elucidate energy flows and trophic interactions in Lake Apopka, a hypereutrophic lake in central Florida, U.S.A. Isotope compositions of lake biota ranged from −27·1 to −3·0‰ for δ13C, and from 3·7 to 13·9‰ for δ15N. The food web was based primarily on plankton production with diatoms, Microcystis and zooplankton dominating the diet of fish. Carbon isotope evidence showed that pico- and nano-phytoplankton were not a direct carbon source for fish, but were important to zooplankton. δ15N mass balance estimates indicated that planktivorous fish obtained 48–85% of their diets from zooplankton. The ∼3‰ range of δ15N in gizzard shad reflected increasing dependence on zooplankton as fish grew whereas the positive relationship between total length and δ15N of largemouth bass reflected increasing predation on larger planktivorous fish with growth. The broad ranges of δ13C (−25·9 to −9·5‰) and δ15N (5·8 to 14·4‰) of blue tilapia were indicators of diet diversity. Two presumed omnivores (brown bullhead and white catfish) and piscivores (black crappie, largemouth bass and Florida gar) were found to depend on planktivorous fish. However, stable isotope data revealed no trophic links between blue tilapia, an abundant fish in the near-shore area, and piscivores.  相似文献   

10.
In the present study, profiles of stable isotope composition were characterized for two species with partially migratory populations in rivers along the latitudinal gradient of Patagonia, brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss . The effects of factors ( e.g. ontogeny of fishes, location, species and fasting) that may influence the stable isotope analysis (SIA) were evaluated, as was SIA evaluated as a tool to assign individual fish to their corresponding ecotype. Anadromous fishes exhibited enriched δ15N (15·2 ± 1·0‰; mean ± s . d .) and δ13C (−19·2 ± 1·3‰) relative to resident fishes'δ15N (8·8 ± 1·1‰) and δ13C (−23·2 ± 2·5‰). For both species, the difference in δ15N was larger between resident (range 6·8–10·7‰) and anadromous (range 14·3–17·8‰) fishes than that in δ13C. Values of δ13C, while not as dramatically contrasting in rainbow trout, provided a powerful anadromy marker for brown trout in the region. Increases were found in both δ15N and δ13C during the spawning migration of anadromous rainbow trout, most likely due to fasting. Differences in stable isotopes between location, size and species were found, suggesting different stable isotopes base levels in freshwater environments and different trophic levels and feeding location of anadromous populations. The SIA was demonstrated as a powerful tool for ecotype discrimination in Patagonian Rivers, overriding any effect of sampling location, size or species.  相似文献   

11.
The diet of ruffe Gymnocephalus cernuus was studied in two native populations in lakes of different productivity in south-west Finland using both traditional stomach content analyses and stable isotopes. According to stomach content analyses, chironomids were the most important prey type in both lakes and the diversity of the other prey reflected the zoobenthos community in the lake. Stable isotope analyses of carbon and nitrogen showed distinctive lake-specific and total length ( L T)-related patterns in both δ13C and δ15N values, which could not be explained solely with diet changes. In the large mesotrophic Pyhäjärvi, both 13C and 15N isotopes became slightly enriched with increasing ruffe L T, although stomach contents analyses did not suggest any diet change in larger ruffe. In the hypereutrophic Köyliönjärvi, the carbon isotope signatures of ruffe especially showed wide variation (−33·5 to −24·1‰), which was probably due to variable consumption of prey items with highly negative carbon isotope signatures. Overall, this study emphasizes that the interpretation of stable isotope results requires extensive background data of the system and that even then the diet composition of a consumer may be very difficult to define due to large variation in the signatures.  相似文献   

12.
Jan Karlsson 《Oikos》2007,116(10):1691-1696
This study investigates the allocation of allochthonous organic carbon (AlloOC) to pelagic respiration and biomass production in unproductive lakes. Metabolic process rates and stable isotopic composition (δ13C) of crustacean zooplankton and respired CO2 were measured in the epilimnion of 13 forest lakes in northern Sweden. The δ13C of zooplankton was low (−31.2 to −38.0‰) compared to that of respired CO2 (−28.4 to −30.6‰), implying that the relative importance of AlloOC was lower for zooplankton (ca 40%) than for respiration (ca 80%). Combining δ13C and carbon flux data revealed that a large amount of metabolized AlloOC was lost in respiration, compared to the amount transferred to zooplankton (<3%). Thus, despite large respiratory losses, AlloOC was still important for zooplankton growth, implying a high supply of AlloOC in comparison to phytoplankton generated organic carbon in the lakes.  相似文献   

13.
Warming climate could affect leaf-level carbon isotope composition (δ13C) through variations in photosynthetic gas exchange. However, it is still unclear to what extent variations in foliar δ13C can be used to detect changes in net primary productivity (NPP) because leaf physiology is only one of many determinants of stand productivity. We aim to examine how well site-mean foliar δ13C and stand NPP co-vary across large resource gradients using data obtained from the Tibetan Alpine Vegetation Transects (1900–4900 m, TAVT). The TAVT data indicated a robust negative correlation between foliar δ13C and NPP across ecosystems (NPP=−2.7224δ13C-67.738, r2=0.60, p<0.001). The mean foliar δ13C decreased with increasing annual precipitation and its covariation with mean temperature and soil organic carbon and nitrogen contents. The results were further confirmed by global literature data. Pooled δ13C data from global literature and this study explained 60% of variations in annual NPP both from TAVT-measures and MODIS-estimates across 67 sites. Our results appear to support a conceptual model relating foliar δ13C and nitrogen concentration (Nmass) to NPP, suggesting that: 1) there is a general (negative) relationship between δ13C and NPP across different water availability conditions; 2) in water-limited conditions, water availability has greater effects on NPP than Nmass; 3) when water is not limiting, NPP increases with increasing Nmass.  相似文献   

14.
The diet, habitat use and mercury concentration of the small fish species, the straight fin barb Barbus paludinosus , were studied in Lake Awassa, Ethiopia, for a period of 1 year from February 2003 to January 2004. Stable isotope signatures of nitrogen and carbon in different total length ( L T) classes were used to determine trophic positions and organic carbon sources, respectively. Barbus paludinosus mainly occupied the protected benthic habitats (littoral and profundal) of the lake. The δ13C values were in the range from −24 to −19‰, indicating that the carbon source for B. paludinosus was benthic, as well. Small individuals (≤ 60 mm L T) mainly preyed upon ostracods, intermediate sizes (60–100 mm) on aquatic insects and gastropods, while a tiny cyprinodont fish Aplocheilichthys antinorii dominated the diet of large individuals (100–160 mm). The progressively increase in δ15N with increasing L T also indicated a diet shift towards piscivory in larger individuals. The mercury concentration ranging from 0·02 to 0·74 mg kg−1 wet mass (wm), was unexpectedly high in this small species, and was significantly positively related to L T, as well as to δ15N. Some large individuals had mercury concentrations < 0·1 mg kg−1 wm, and low δ15N, indicating substantial variations in diet between individuals of same size. The study suggests that other piscivorous species which include B. paludinosus in their diet may have a high mercury intake risk.  相似文献   

15.
The analysis of δ 13C and δ 18O in tree-ring archives offers retrospective insights into environmental conditions and ecophysiological processes. While photosynthetic carbon isotope discrimination and evaporative oxygen isotope enrichment are well understood, we lack information on how the isotope signal is altered by downstream metabolic processes.
In Pinus sylvestris , we traced the isotopic signals from their origin in the leaf water ( δ 18O) or the newly assimilated carbon ( δ 13C), via phloem sugars to the tree-ring, over a time-scale that ranges from hours to a growing season.
Seasonally, variable 13C enrichment of sugars related to phloem loading and transport did lead to uncoupling between δ 13C in the tree-ring, and the c i/ c a ratio at the leaf level. In contrast, the oxygen isotope signal was transferred from the leaf water to the tree-ring with an expected enrichment of 27‰, with time-lags of approximately 2 weeks and with a 40% exchange between organic oxygen and xylem water oxygen during cellulose synthesis.
This integrated overview of the fate of carbon and oxygen isotope signals within the model tree species P. sylvestris provides a novel physiological basis for the interpretation of δ 13C and δ 18O in tree-ring ecology.  相似文献   

16.
1.  Applying Keeling plot techniques to derive δ13C of respiratory input in a closed non-equilibrated chamber can lead to large errors because steady-state diffusion rules are violated in a non-steady-state environment. To avoid these errors, respiratory δ13C can be derived using equilibrated closed chambers.
2.  We introduce a new method to obtain stem respired CO2δ13C (δst - r) with closed equilibrated stem chambers (E-SC). We present a theoretical model describing the equilibration process, test the model against field data and find excellent agreement. The method is further tested by comparing it with closed non-equilibrated stem chambers (NE-SC); we found no difference between these methods.
3.  Our theoretical model to describe CO2 diffusion from the respiratory pool into the chamber and the equation to derive the δ13C of the efflux are general. They could be applied to other ecosystem components (e.g. soils).
4.  Our method is easy to implement, cost effective, minimizes sources of error and allows for rigorous leak detection. One major limitation is its inability to detect rapid change; the equilibration process requires 15 ± 2 h. A second limitation is that it cannot be used for species that produce abundant pitch at sites of stem wounding (e.g. Pseudotsuga menziesii ).
5.  Investigating δ13C of CO2 respired by different ecosystem components is necessary to interpret δ13C of ecosystem respiration. This parameter has major implications with respect to global carbon cycle science.  相似文献   

17.
1 The dispersal abilities of agrioted beetles, serious pests on a variety of crops, are poorly known under natural conditions. This hampers their control. We used, for the first time, a stable isotope approach to assess dispersal of adult Agriotes obscurus in arable land.
2 After a diet switch from a C3- to a C4-plant, carbon isotope ratios of A. obscurus larvae significantly changed towards the isotopic signature of the new diet. Moreover, the larval δ13C signatures were transferred to the wing covers of the adult beetles with little distortion.
3 To assess the dispersal abilities under natural conditions, pheromone traps, lured for Agriotes sp., were installed at two study sites in Western Austria. Each site comprised a maize field (= C4-plant) and adjacent C3-grasslands with traps established along a transect of increasing distance to the maize.
4 δ13C signatures of wing covers revealed that adult male A. obscurus were able to migrate at least 80 m, which was the maximum distance that dispersal could be traced in the present study. The dispersal behaviour might have been influenced by site-specific factors.
5 The results obtained demonstrate a higher potential of adult male Agriotes to disperse than previously assumed. Moreover, the combination of pheromone trapping and stable isotope analysis proved to be an effective approach to study insect movement and dispersal in arable systems harbouring C3- and C4-crops.  相似文献   

18.
Foliar δ^13C values, an indicator of long-term intercellular carbon dioxide concentration and, thus, of long-term water use efficiency (WUE) in plants, were measured for Pinus massoniana Lamb., P. elliottii Engelm., Cunninghamia laceolata (Lamb.) Hook., and Schima superba Gardn. et Champ. in a restored forest ecosystem in the Jiazhu River Basin. Seasonal variation and the relationship between the foliar δ^13C values of the four species and environmental factors (monthly total precipitation, monthly average air temperature, relative humidity, atmospheric pressure, and monthly total solar radiation and evaporation) were investigated. The monthly δ^13C values and WUE of the four species increased with increasing precipitation, air temperature, solar radiation, and evaporation, whereas δ^13C values of the four species decreased with increasing relative humidity and atmospheric pressure. Despite significant differences in δ^13C seasonal means for the four species, our results demonstrate a significant convergence in the responses of δ^13C values and WUE to seasonal variations in environmental factors among the species investigated and that the δ^13C signature for each species gives a strong indication of environmental variables.  相似文献   

19.
The δ13C, δ15N and δ34S isotope values of newly emerged, brook trout Salvelinus fontinalis alevins (free‐swimming individuals beginning exogenous feeding) were examined to determine if progeny of anadromous female spawners could be detected and their contributions to reproduction assessed in river systems with mixed migration strategies. Separation of anadromous and freshwater resident and immigrant sources of progeny could be detected primarily using δ13C values before alevins reached a size of 28 mm fork length and c . 20 days after exogenous feeding began. Among 10 populations, the contributions of anadromous females ranged from 0 to 42% of newly emerged alevins. Correlations between anadromous contributions and estimates of total brook trout density and alevin production were unexpectedly negative.  相似文献   

20.
This study investigated the impact of lipid extraction, CaCO3 removal and of both treatments combined on fish tissue δ13C, δ15N and C:N ratio. Furthermore, the suitability of empirical δ13C lipid normalization and correction models was examined. δ15N was affected by lipid extraction (increase of up to 1·65‰) and by the combination of both treatments, while acidification alone showed no effect. The observed shift in δ15N represents a significant bias in trophic level estimates, i.e. lipid-extracted samples are not suitable for δ15N analysis. C:N and δ13C were significantly affected by lipid extraction, proportional to initial tissue lipid content. For both variables, rates of change with lipid content (ΔC:N and Δδ13C) were species specific. All tested lipid normalization and correction models produced biased estimates of fish tissue δ13C, probably due to a non-representative database and incorrect assumptions and generalizations the models were based on. Improved models need a priori more extensive and detailed studies of the relationships between lipid content, C:N and δ13C, as well as of the underlying biochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号