首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chromatin structures of two well-characterized autonomously replicating sequence (ARS) elements were examined at their chromosomal sites during the cell division cycle in Saccharomyces cerevisiae. The H4 ARS is located near one of the duplicate nonallelic histone H4 genes, while ARS1 is present near the TRP1 gene. Cells blocked in G1 either by alpha-factor arrest or by nitrogen starvation had two DNase I-hypersensitive sites of about equal intensity in the ARS element. This pattern of DNase I-hypersensitive sites was altered in synchronous cultures allowed to proceed into S phase. In addition to a general increase in DNase I sensitivity around the core consensus sequence, the DNase I-hypersensitive site closest to the core consensus became more nuclease sensitive than the distal site. This change in chromatin structure was restricted to the ARS region and depended on replication since cdc7 cells blocked near the time of replication initiation did not undergo the transition. Subsequent release of arrested cdc7 cells restored entry into S phase and was accompanied by the characteristic change in ARS chromatin structure.  相似文献   

2.
Purification and characterization of proteins that bind to yeast ARSs   总被引:27,自引:0,他引:27  
Two proteins that bind to yeast ARS DNA have been purified using conventional and oligonucleotide affinity chromatography. One protein has been purified to homogeneity and has a mass of 135 kDa. Competitive binding studies and DNase I footprinting show that the protein binds to a sequence about 80 base pairs away from the core consensus in the region known as domain B. This region has previously been shown to be required for efficient replication of plasmids carrying ARS1 elements. To investigate further whether the protein might have a function related to the ability of ARSs to act as replicators, binding to another ARS was tested. The protein binds to the functional ARS adjacent to the silent mating type locus HMR, called the HMR-E ARS, about 60 base pairs from the core consensus sequence. Surprisingly, there is little homology between the binding site at the HMR-E ARS and the binding site at ARS1. The 135-kDa protein is probably the same as ABF-I (SBF I) (Shore, D., Stillman, D. J. Brand, A. H., and Nasmyth, K. A. (1987) EMBO J. 6, 461-467; Buchman, A. R., Kimmerly, W. J., Rine, J., and Kornberg, R. D. (1988) Mol. Cell. Biol. 8, 210-225). A second DNA-binding protein was separated from ABF-I during later stages of the purification. This protein, which we designate ABF-III, also binds specifically to the ARS1 sequence, as shown by DNase I footprinting, at a site adjacent to the ABF-I recognition site. Purification of these two ARS binding proteins should aid in our understanding of the complex mechanisms that regulate eukaryotic DNA replication.  相似文献   

3.
4.
5.
Using oligonucleotide affinity chromatography with DNase I footprinting as an assay we have looked for proteins that interact with sequence elements within the yeast origin of replication, autonomously replicating sequence 1 (ARS1). In this work we describe a protein that binds with high affinity to DNA but displays only moderate sequence specificity. It is eluted at 0.7 M salt from an ARS1 oligonucleotide column. Footprinting analysis on ARS1 at a high protein concentration revealed at least three sites of protection flanking element A and its repeats. Element A itself is rendered hypersensitive to DNase I digestion upon protein binding. This pattern is also observed for the H4 and HMR-E ARSs, suggesting that the protein alters the DNA conformation at element A and its repeats. The affinity-purified fraction is also capable of supercoiling a relaxed, covalently closed plasmid in the presence of topoisomerase. Highly purified preparations of the protein are enriched in an 18-kDa polypeptide which can be renatured from a denaturing gel and shown to bind ARS1 DNA. We have designated this protein DBF-A, DNA-binding factor A.  相似文献   

6.
7.
TRP1 RI circle (now designated YARp1, yeast acentric ring plasmid 1) is a 1,453-base-pair artificial plasmid composed exclusively of Saccharomyces cerevisiae chromosomal DNA. It contains both the TRP1 gene and ARS1 (a DNA sequence that permits extrachromosomal maintenance of recombinant plasmids). This high-copy-number, relatively stable plasmid was shown to be organized into nucleosomes comparable to typical yeast chromatin, containing a possible maximum of nine nucleosomes per circle. Therefore, YARp1 can be used to examine the structure of chromatin of both a chromosomally derived replicator and a functional gene. By mapping regions of micrococcal nuclease cleavage in chromatin versus purified DNA, we located the positions of protected regions on the circle with reference to six unique restriction sites. Measurements made on patterns of early digestion products indicated that a region of approximately 300 base pairs in the vicinity of ARS1 was strongly resistant to micrococcal nuclease. The remainder of the plasmid appeared to be associated with five positioned nucleosomes and two nonnucleosomal, partially protected regions on the bulk of the molecules. After similar extents of digestion, naked DNA did not exhibit an equivalent pattern, although some hypersensitive cleavage sites matched sites found in the chromatin. These results are consistent with the interpretation that the protected domains are aligned with respect to a specific site or sites on the small circular chromatin.  相似文献   

8.
Transformation studies with Saccharomyces cerevisiae (bakers' yeast) have identified DNA sequences which permit extrachromosomal maintenance of recombinant DNA plasmids in transformed cells. It has been hypothesized that such sequences (called ARS for autonomously replicating sequence) serve as initiation sites for DNA replication in recombinant DNA plasmids and that they represent the normal sites for initiation of replication in yeast chromosomal DNA. We have constructed a novel plasmid called TRP1 R1 Circle which consists solely of 1,453 base pairs of yeast chromosomal DNA. TRP1 RI Circle contains both the TRP1 gene and a sequence called ARS1. This plasmid is found in 100 to 200 copies per cell and is relatively stable during both mitotic and meiotic cell cycles. Replication of TRP1 RI Circle requires the products of the same genes (CDC28, CDC4, CDC7, and CDC8) required for replication of chromosomaL DNA. Like chromosomal DNA, its replication does not occur in cells arrested in the B1 phase of the cell cycle by incubation with the yeast pheromone alpha-factor. In addition, TRP1 RI Circle DNA is organized into nucleosomes whose size and spacing are indistinguishable from that of bulk yeast chromatin. These results indicate that TRP1 RI Circle has the replicative and structural properties expected for an origin of replication from yeast chromosomal DNA. Thus, this plasmid is a suitable model for further studies of yeast DNA replication in both cells and cell-free extracts.  相似文献   

9.
We have developed a new high resolution method for screening 400-600 base pairs of DNA in chromatin for DNase I hypersensitive sites and protein-DNA interactions. By separating the DNA isolated from nuclease-digested nuclei in small, native polyacrylamide gels prior to electroblotting onto nylon membranes, we increased the resolution by greater than 3-fold as compared with the traditional approach whereby the nuclease-digested DNA is fractionated electrophoretically in agarose gels (11). In addition, our native genomic blotting method has the advantage of combining the ability of the traditional agarose approach to detect DNase I hypersensitive sites, with the genomic sequencing method (2), where individual protein-DNA contacts can be observed. Native genomic blotting therefore permits for the first time the display of DNase I hypersensitive sites and protein-DNA interactions at high resolution on the same autoradiograph. This method allows us to investigate a new level of chromatin structure and to therefore obtain better insight into levels of gene structure, organization and gene regulation.  相似文献   

10.
We have mapped the DNase I-hypersensitive sites (HSs) in Yeast Artificial Chromosomes (YACs) containing segments of human chromosomal DNA. One of the five HSs found in a YAC carrying the β-globin gene cluster has been localised in the region, termed HS2, that is DNase I hypersensitive in most human cells. We have also identified a class of HSs in YACs containing DNA from the q11.2 band of human chromosome 21, which are located close to, or within, segments of the chromosome that are sensitive to restriction enzymes recognizing CGCG tetranucleotides. Received: 18 June 1997 / Accepted: 10 August 1997  相似文献   

11.
12.
13.
14.
15.
16.
The active beta-globin genes in chicken erythrocytes, like all active genes, reside in large chromatin domains which are preferentially sensitive to digestion by DNase I. We have recently proposed that the special structure of chromatin in active domains is maintained by torsional stress in the DNA (Villeponteau et al., Cell 39:469-478, 1984). This hypothesis predicts that nicking of the DNA within any such chromosomal domain in vivo will relax the DNA and lead to loss of the special DNase I-sensitive state. Here we have tested this prediction by using gamma irradiation and bleomycin treatment to cleave DNA within intact chicken embryo erythrocytes. Both treatments cause reversal of DNase I sensitivity. Moreover, reversal occurs at approximately one nick per 150 kilobase pairs for both agents despite their entirely unrelated modes of cell penetration and DNA attack. These results suggest that the domain of DNase I sensitivity surrounding the beta-globin genes comprises 150 kilobase pairs of chromatin under torsional stress and that a single DNA nick in this region is sufficient to reverse the DNase I sensitivity throughout the entire domain.  相似文献   

17.
To study mechanisms of nucleosome positioning, small circular plasmids were constructed, assembled into chromatin in vivo in Saccharomyces cerevisiae, and their chromatin structures were analysed with respect to positions of nucleosomes and nuclease-sensitive regions. Plasmids used include insertions of the URA3 gene into the TRP1 gene of the TRP1ARS1 circular plasmid in the same (TRURAP) or opposite (TRARUP) orientation. The URA3 gene has six precisely positioned, stable nucleosomes flanked by nuclease-sensitive regions at the 5' and 3' ends of the gene. Three of these nucleosome positions do not depend on the flanking nuclease-sensitive regions, since they are formed at similar positions in a derivative plasmid (TUmidL) that contains the middle of the URA3 sequence but not the 5' and 3' ends. These positions are probably due to protein-DNA interactions. In both TRURAP and TRARUP, the positions of the nucleosomes on the TRP1 gene were, however, shifted compared with the positions on the parental TRP1ARS1 circle and TUmidL. These changes are interpreted to be due to changes in the positions of flanking nuclease-sensitive regions that might act as boundaries to position nucleosomes. Thus, two independent mechanisms for nucleosome positioning have been demonstrated in vivo. The ARS1 region contains the 3' end of the TRP1 gene and the putative origin of replication. Since in TRURAP and TRARUP the TRP1 gene is interrupted, but the ARS1 region remains nuclease sensitive, this non-nucleosomal conformation of the ARS1 region probably reflects a chromatin structure important for replication.  相似文献   

18.
Mapping DNase I hypersensitive sites is an accurate method of identifying the location of gene regulatory elements, including promoters, enhancers, silencers and locus control regions. Although Southern blots are the traditional method of identifying DNase I hypersensitive sites, the conventional manual method is not readily scalable to studying large chromosomal regions, much less the entire genome. Here we describe DNase-chip, an approach that can rapidly identify DNase I hypersensitive sites for any region of interest, or potentially for the entire genome, by using tiled microarrays. We used DNase-chip to identify DNase I hypersensitive sites accurately from a representative 1% of the human genome in both primary and immortalized cell types. We found that although most DNase I hypersensitive sites were present in both cell types studied, some of them were cell-type specific. This method can be applied globally or in a targeted fashion to any tissue from any species with a sequenced genome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号