首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Schizosaccharomyces pombe becomes resistant to killing by high concentration of hydrogen peroxide and other severe stresses including oxidants, high temperature and high concentration of ethanol when pretreated with nonlethal levels of hydrogen peroxide. In the presence of the protein synthesis inhibitor, cycloheximide, during hydrogen peroxide pretreatment, the cell obtained partial resistance to a higher level of hydrogen peroxide. The partial resistance to hydrogen peroxide in the presence of cycloheximide was acquired within 30 min of pretreatment but complete resistance obtained with de novo protein synthesis was not attained before 45 min of pretreatment. During adaptation to hydrogen peroxide, at least 15 polypeptides are induced, as analyzed by two-dimensional gel electrophoresis. Catalase activity is induced eight-fold by treatment with a nonlethal level of hydrogen peroxide.  相似文献   

2.
3.
4.
An efficient oxidative stress response (OSR) is important for the facultative pathogenic yeast Candida albicans to survive within the human host. We used a large scale 2-D protein gel electrophoresis approach to analyze the stress response mechanisms of C. albicans after treatment with hydrogen peroxide and the thiol oxidizing agent, diamide. Quantitation of in vivo protein synthesis after pulse labeling of the proteins with radioactive L-[35S]-methionine resulted in characteristic proteome signatures for hydrogen peroxide and diamide with significant overlap of 21 up-regulated proteins for both stressors. Among the induced proteins were enzymes with known antioxidant functions like catalase or thioredoxin reductase and a set of oxidoreductases. 2-D gel analysis of mutants in the CAP1 gene revealed that the synthesis of 12 proteins is controlled by the oxidative stress regulator Cap1p. Stressing its importance for the C. albicans OSR, all 12 proteins were also induced after oxidative challenge by hydrogen peroxide or diamide.  相似文献   

5.
6.
The oxidative stress response in Bacillus subtilis   总被引:9,自引:0,他引:9  
Abstract Bacillus subtilis undergoes a typical bacterial stress response when exposed to low concentrations (0.1 mM) of hydrogen peroxide. Protection is thereby induced against otherwise lethal, challenge concentrations (10 mM) of this oxidant and a number of proteins are induced including the scavenging enzymes, catalase and alkyl hydroperoxide reductase, and a putative DNA binding and protecting protein. Induced protection against higher concentrations (10–30 mM) of hydrogen peroxide is eliminated in a catalase-deficient mutant. Both RecA and Spo0A influence the basal but not the induced resistance to hydrogen peroxide. A regulatory mutation has been characterized that affects the inducible phenotype and is constitutively resistant to high concentrations of hydrogen peroxide. This mutant constitutively overexpresses the proteins induced by hydrogen peroxide in the wild-type. The resistance of spores to hydrogen peroxide is partly attributable to binding of small acid soluble proteins by the spore DNA and partly to a second step which coincides with the depletion of the NADH pool, which may inhibit the generation of hydroxyl radicals from hydrogen peroxide.  相似文献   

7.
The sequential application of protein tagging, affinity purification, and mass spectrometry enables highly accurate charting of proteomic environments by the characterization of stable protein assemblies and the identification of subunits that are shared between two or more protein complexes, termed here "proteomic hyperlinks." We have charted the proteomic environments surrounding the histone methyltransferase, Set1, in both yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Although the composition of these nonessential Set1 complexes is remarkably conserved, they differ with respect to their hyperlinks to their proteomic environments. We speculate that conservation of the core components of protein assemblies and variability of hyperlinks represents a general principle in the molecular organization of eukaryotic proteomes.  相似文献   

8.
Stress granules (SGs) are cytoplasmic aggregates of RNA and proteins in eukaryotic cells that are rapidly induced in response to environmental stress, but are not seen in cells growing under favorable conditions. SGs have been primarily studied in mammalian cells. The existence of SGs in the fission yeast and the distantly related budding yeast was demonstrated only recently. In both species, they contain many orthologs of the proteins seen in mammalian SGs. In this study, we have characterized these proteins and determined their involvement in the assembly of fission yeast SGs, in particular, the homolog of human G3BP proteins. G3BP interacts with the deubiquitinating protease USP10 and plays an important role in the assembly of SGs. We have also identified Ubp3, an ortholog of USP10, as an interaction partner of the fission yeast G3BP-like protein Nxt3 and required for its stability. Under thermal stress, like their human orthologs, both Nxt3 and Ubp3 rapidly relocalize to cytoplasmic foci that contain the SG marker poly(A)-binding protein Pabp. However, in contrast to G3BP1 and USP10, neither deletion nor overexpression of nxt3(+) or ubp3(+) affected the assembly of fission yeast SGs as judged by the relocalization of Pabp. Similar results were observed in mutants defective in orthologs of SG components that are known to affect SG assembly in human and in budding yeast, such as ataxia-2 and TIA-like proteins. Together, our data indicate that despite similar protein compositions, the underlying molecular mechanisms for the assembly of SGs could be distinct between species.  相似文献   

9.
10.
11.
Plants adapt to environmental stresses through specific genetic responses. The molecular mechanisms associated with signal transduction, leading to changes in gene expression early in the stress response, are largely unknown. It is clear, however, that gene expression associated with acclimatory responses is sensitive to the redox state of the cell. Of the many components which contribute to the redox balance of the cell, two factors have been shown to be crucial in mediating stress responses. Thiol/disulphide exchange reactions, particularly involving the glutathione pool and the generation of the oxidant H2O2, are central components of signal transduction in both environmental and biotic stresses. These molecules are multifunctional triggers, modulating metabolism and gene expression. Both are able to cross biological membranes and diffuse or be transported long distances from their sites of origin. Glutathione and H2O2 may act alone or in unison, in intracellular and systemic signalling systems, to achieve acclimation and tolerance to biotic and abiotic stresses.  相似文献   

12.
We tested whether pre-treatments of roots with H2O2 (10 mM for 8 h) or sodium nitroprusside (SNP; 100 μM for 48 h), a donor of NO, could induce prime antioxidant defense responses in the leaves of citrus plants grown in the absence or presence of 150 mM NaCl for 16 d. Both root pre-treatments increased leaf superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) activities, and induced related-isoform(s) expression under non-NaCl-stress conditions. When followed by salinity, certain enzymatic activities also exhibited an up-regulation in response to H2O2 or SNP pre-exposure. An NaCl-stress-provoked decrease in the ascorbate redox state was partially prevented by both pre-treatments, whereas the glutathione redox state under normal and NaCl-stress conditions was increased by SNP. Real-time imaging of NO production was found in vascular tissues and epidermal cells. Furthermore, NaCl-induced inhibition in OH scavenging activity and promotion of OH-mediated DNA strand cleavage was partially prevented by SNP. Moreover, NaCl-dependent protein oxidation (carbonylation) was totally reversed by both pre-treatments as revealed by quantitative assay and protein blotting analysis. These results provide strong evidence that H2O2 and NO elicit long-lasting systemic primer-like antioxidant activity in citrus plants under physiological and NaCl-stress conditions.  相似文献   

13.
Shi S  Chen W  Sun W 《Proteomics》2011,11(24):4712-4725
Many environmental stimuli, including light, biotic and abiotic stress factors, induce changes in cellular Ca(2+) concentrations in plants. Such Ca(2+) signatures are perceived by sensor molecules such as calcineurin B-like (CBL) proteins. AtCBL1, a member of the CBL family which is highly inducible by multiple stress signals, is known to function in the salt stress signal transduction pathway and to positively regulate the plant tolerance to salt. To shed light into the molecular mechanisms of the salt stress response mediated by AtCBL1, a two-dimensional DIGE proteomic approach was applied to identify the differentially expressed proteins in Arabidopsis wild-type and cbl1 null mutant plants in response to salt stress. Seventy-three spots were found altered in expression by least 1.2-fold and 50 proteins were identified by MALDI-TOF/TOF-MS, including some well-known and novel salt-responsive proteins. These proteins function in various processes, such as signal transduction, ROS scavenging, energy production, carbon fixation, metabolism, mRNA processing, protein processing and structural stability. Receptor for activated C kinase 1C (RACK1C, spot 715), a WD40 repeat protein, was up-regulated in the cbl1 null mutant, and two rack1c mutant lines showed decreased tolerance to salt stress, suggesting that RACK1C plays a role in salt stress resistance. In conclusion, our work demonstrated the advantages of the proteomic approach in studies of plant biology and identified candidate proteins in CBL1-mediated salt stress signaling network.  相似文献   

14.
15.
We looked for changes in gene expression and novel genes that could be involved in the interaction between glucose repression and oxidative stress response in the fission yeast, Schizosaccharomyces pombe, using a constitutive invertase mutant, ird11, which is resistant to glucose. BLAST analysis was made of the S. pombe genome database of cDNAs whose expression ratios differentially decreased or increased upon exposure to mild oxidative stress in this mutant compared to the wild type. Genes with this type of activity were identified as rpl302, encoding 60S ribosomal protein L3, and mpg1, encoding mannose-1-phosphate guanyltransferase; their expression patterns were measured using quantitative real-time PCR. We found that the expression levels of rpl302 and mpg1 genes in ird11 under unstressed conditions were increased compared to those of the wild type. Under stress conditions, the expression levels of the rpl302 gene were decreased in both strains, while mpg1 expression levels remained unchanged. These results suggest that these genes play a role in the response to oxidative stress in this mutant strain.  相似文献   

16.
Abstract Hydrostatic pressure stress and a dye plate method were first used to investigate the direct induction of homozygous diploids from the haploid yeast Schizosaccharomyces pombe . Above 100 MPa at 25 °C for 10 min, pressure stress greatly inactivated the haploid strains of JY1 (L972 h ) JY3 (L975 h 90) and JY334 ( ade 6-M216 leul h +). At the same time, when pressure stressed cells of these strains at more than 100–200 MPa were spread on a dye plate, some pressure-effected visible colonies were stained violet (variant colonies); the rest were stained pink, similar to colonies originating from haploid cells that were not pressure-stressed. Based on the cell size, DNA content, crosses, and random spore analyses for the segregation of mating types or auxotrophic markers, variant cells originating from color changed colonies of JY1 after pressure stress were very stable and found to be homozygous diploid with an h− / h− genotype at the mating-type locus. From these results we conclude that pressure stress in combination with a dye plate is a simple and useful method for direct induction of homozygous diploid cells with very high stability.  相似文献   

17.
18.
Circadian rhythms are fundamental biological phenomena generated by molecular genetic mechanisms known as circadian clocks. There is increasing evidence that circadian synchronization of physiological and cellular processes contribute to the wellness of organisms, curbing pathologies such as cancer and premature aging. Therefore, there is a need to understand how circadian clocks orchestrate interactions between the organism’s internal processes and the environment. Here, we explore the nexus between the clock and oxidative stress susceptibility in Drosophila melanogaster. We exposed flies to acute oxidative stress induced by hydrogen peroxide (H2O2), and determined that mortality rates were dependent on time at which exposure occurred during the day/night cycle. The daily susceptibility rhythm was abolished in flies with a null mutation in the core clock gene period (per) abrogating clock function. Furthermore, lack of per increased susceptibility to H2O2 compared to wild-type flies, coinciding with enhanced generation of mitochondrial H2O2 and decreased catalase activity due to oxidative damage. Taken together, our data suggest that the circadian clock gene period is essential for maintaining a robust anti-oxidative defense.  相似文献   

19.
A unique gene named pca1(+), encoding a metacaspase, was cloned from the fission yeast Schizosaccharomyces pombe and was used to create a recombinant plasmid, pPMC. The metacaspase mRNA level was markedly elevated in the fission yeast cells harboring the plasmid pPMC. Overexpressed Pca1(+) appeared to stimulate the growth of the fission yeast cells instead of arresting their growth. Its expression was enhanced by stress-inducing agents such as H(2)O(2), sodium nitroprusside, and CdCl(2), and it conferred cytoprotection, especially against CdCl(2). However, such protection was not reproducible in the budding yeast Saccharomyces cerevisiae harboring pPMC. Taken together, these results propose that Pca1(+) may be involved in the growth and stress response of the fission yeast.  相似文献   

20.
Hydrogen peroxide (H2O2) acts as a signaling molecule via its reactions with particular cysteine residues of certain proteins. Determining the roles of direct oxidation by H2O2 versus disulfide exchange reactions (i.e. relay reactions) between oxidized and reduced proteins of different identities is a current focus. Here, we use kinetic modeling to estimate the spatial and temporal localization of H2O2 and its most likely oxidation targets during a sudden increase in H2O2 above the basal level in the cytosol. We updated a previous redox kinetic model with recently measured parameters for HeLa cells and used the model to estimate the length and time scales of H2O2 diffusion through the cytosol before it is consumed by reaction. These estimates were on the order of one micron and one millisecond, respectively. We found oxidation of peroxiredoxin by H2O2 to be the dominant reaction in the network and that the overall concentration of reduced peroxiredoxin is not significantly affected by physiological increases in intracellular H2O2 concentration. We used this information to reduce the model from 22 parameters and reactions and 21 species to a single analytical equation with only one dependent variable, i.e. the concentration of H2O2, and reproduced results from the complete model. The reduced kinetic model will facilitate future efforts to progress beyond estimates and precisely quantify how reactions and diffusion jointly influence the distribution of H2O2 within cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号