首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
保卫细胞钙信号的研究进展   总被引:4,自引:0,他引:4  
钙(Ca^2 )是多种信号途径的第二信使。Ca^2 成像技术的成熟和发展为显示保卫细胞胞质Ca^2 浓度([Ca^2 ]cyt)的分布及外界刺激引起[Ca^2 ]cyt的变化模式提供了很好的研究工具,关于细胞内外Ca^2 库释放Ca^2 的机制也有了较清楚的认识。拟南芥突变体的研究使Ca^2 信号上游分子及其排序更加明确,[Ca^2 ]cyt增加下游的磷酸化和去磷酸化过程也是气孔关闭必需的生理过程。  相似文献   

2.
Oscillatory Ca2+ signaling and its cellular function   总被引:2,自引:0,他引:2  
It is well known that in the cells of many higher eukaryotic organisms Ca2+ ions are used as a signal messenger in the regulation of cellular functions. From recent studies with single cells it was suggested that the intracellular Ca2+ signal comprises repetitive and periodic Ca2+ spikes in a variety of cells. The mechanism by which intracellular Ca2+ oscillates and the biological significance of this oscillation are not well understood. It also remains to be determined how the Ca2+ signaling system sends a message into the cell, intermittently, to amplify the functional response. This review describes and integrates some recent views of oscillatory Ca2+ signaling.  相似文献   

3.
钙(Ca2+)是多种信号途径的第二信使。Ca2+成像技术的成熟和发展为显示保卫细胞胞 质Ca2+浓度([Ca2+]cyt)的分布及外界刺激引起[Ca2+]cyt的变化模式提供了很好的研究工具,关于细胞内外Ca2+库释放Ca2+的机制也有了较清楚的认识。拟南芥突变体的研究使Ca2+ 信号上游分子及其排序更加明确,[Ca2+]cyt增加下游的磷酸化和去磷酸化 过程也是气孔关闭必需的生理过程。  相似文献   

4.
Calcium and signal transduction in plants   总被引:1,自引:0,他引:1  
Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.  相似文献   

5.
Nicotinic acid adenine dinucleotide phosphate (NAADP+) has been identified as a novel second messenger triggering Ca2+ release from intracellular stores. Here we report that murine cortical astrocytes in culture and in acute slices respond with transient intracellular Ca2+ increases to extracellularly applied NAADP+ and express the NAADP+-producing enzyme CD38. The Ca2+ transients triggered by NAADP+ occurred with an average delay of 35 s as compared with ATP-triggered Ca2+ signaling, suggesting that NAADP+ may have to enter the cell to act. Blockage of connexin hemichannels (a possible entry route for NAADP+ into the cell) reduced the number of astrocytes responding to NAADP+. Disruption of lysosomes as the suggested site of NAADP+ receptors reduced the number of astrocytes responding to NAADP+ strongly. The NAADP+-triggered Ca2+ signal also depended on intact endoplasmic reticulum Ca2+ stores linked to activation of inositol 1,4,5-trisphosphate receptors and on the activity of voltage-gated Ca2+ channels. Adenosine receptor-mediated signaling contributes to the NAADP+-evoked signal, since it is strongly reduced by the adenosine receptor blocker CGS-15943. Moreover, NAADP+ triggered responses in all other cell types (cultured cerebellar neurons, microglia, and oligodendrocytes) of the central nervous system.  相似文献   

6.
Receptor-activated cytoplasmic Ca2+ oscillations have been investigated using both single cell microfluorometry and voltage-clamp recording of Ca(2+)-dependent Cl- current in single internally perfused acinar cells. In these cells there is direct experimental evidence showing that the ACh-evoked [Ca2+]i fluctuations are due to an inositol trisphosphate-induced small steady Ca2+ release which in turn evokes repetitive Ca2+ spikes via a caffeine-sensitive Ca(2+)-induced Ca2+ release process. There is indirect evidence suggesting that receptor-activation in addition to generating the Ca2+ releasing messenger, inositol trisphosphate, also produces another regulator involved in the control of Ca2+ signal spreading. Intracellular inositol trisphosphate or Ca2+ infusion produce short duration repetitive spikes confined to the cytoplasmic area close to the plasma membrane, but these signals can be made to progress throughout the cell by addition of caffeine or by receptor activation.  相似文献   

7.
The mating pheromone, alpha-factor, of the yeast Saccharomyces cerevisiae binds to the heterotrimeric G protein-coupled cell surface receptor of MATa cells and induces cellular responses necessary for mating. In higher eukaryotic cells, many hormones and growth factors rapidly mobilize a second messenger, Ca2+, by means of receptor-G protein signaling. Although striking similarities between the mechanisms of the receptor-G protein signaling in yeast and higher eukaryotes have long been known, it is still uncertain whether the pheromone rapidly mobilizes Ca2+ necessary for early events of the pheromone response. Here we reexamine this problem using sensitive methods for detecting Ca2+ fluxes and mobilization, and find no evidence that there is rapid Ca2+ influx leading to a rapid increase in the cytosolic free Ca2+ concentration. In addition, the yeast PLC1 deletion mutant lacking phosphoinositide-specific phospholipase C, a key enzyme for generating Ca2+ signals in higher eukaryotic cells, responds normally to the pheromone. These findings suggest that the receptor-G protein signaling does not utilize Ca2+ as a second messenger in the early stage of the pheromone response pathway. Since the receptor-G protein signaling does stimulate Ca2+ influx after early events have finished and this stimulation is essential for late events in the pheromone response pathway [Iida et al., (1990) J. Biol. Chem., 265: 13391-13399] Ca2+ may be used only once in the signal transduction pathway in unicellular eukaryotes such as yeast.  相似文献   

8.
The versatility of Ca2+ as a second messenger lies in the complex manner in which Ca2+ signals are generated. How information contained within the Ca2+ code is interpreted underlies cell function. Recently, we identified CAPRI and RASAL as related Ca2+-triggered Ras GTPase-activating proteins. RASAL tracks agonist-stimulated Ca2+ oscillations by repetitively associating with the plasma membrane, yet CAPRI displays a long-lasting Ca2+-triggered translocation that is refractory to cytosolic Ca2+ oscillations. CAPRI behavior is Ca2+- and C2 domain-dependent but sustained recruitment is predominantly Ca2+ independent, necessitating integration of Ca2+ by the C2 domains with agonist-evoked plasma membrane interaction sites for the pleckstrin homology domain. Using an assay to monitor Ras activity in real time, we correlate the spatial and temporal translocation of CAPRI with the deactivation of H-Ras. CAPRI seems to low-pass filter the Ca2+ signal, converting different intensities of stimulation into different durations of Ras activity in contrast to the preservation of Ca2+ frequency information by RASAL, suggesting sophisticated modes of Ca2+-regulated Ras deactivation.  相似文献   

9.
Ca2+ is well established as an intracellular second messenger. However, the molecular identification of a detector for extracellular Ca2+--the extracellular calcium-sensing receptor--has opened up the possibility that Ca2+ might also function as a messenger outside cells. Information about the local extracellular Ca2+ concentration is conveyed to the interior of many cell types through this unique G-protein-coupled receptor. Here, we describe new emerging concepts concerning the signalling function of extracellular Ca2+, with particular emphasis on the extracellular calcium-sensing receptor.  相似文献   

10.
Carafoli E 《The FEBS journal》2005,272(5):1073-1089
Calcium is the most universal carrier of signals to cells. Chosen by evolution because of its peculiar flexibility as a ligand, it now regulates all important aspects of cell activity, beginning with the creation of new life at fertilization and ending with the dramatic event of apoptotic suicide at the end of the life cycle. The process of signal transduction by Ca2+ displays a number of properties that make it unique among all other carriers of signals: for instance, the ability to perform both a first messenger and a second messenger function, or the frequent activation of autoregulatory mechanisms. The aspect that distinguishes the Ca2+ signaling function most dramatically is ambivalence. Cells have an absolute dependence on the messenger function of Ca2+ in order to function properly and must control its homeostasis with precision to maintain its free concentration in their interior at the appropriate low level. Catastrophy, however, invariably follows whenever protracted failures of the control mechanisms lead to sustained Ca2+ overload.  相似文献   

11.
12.
The best established function of C5b-9 is the ability to lyse or kill cells after assembly in the plasma membrane. In addition to this cytolytic function, increasing evidence suggests that C5b-9 also stimulate a variety of cell functions in vitro. Relatively little is known about the C5b-9 signals responsible for cell activation other than a transient increase in cytosolic Ca2+ primarily due to Ca2+ influx that have been determined in a cell population. In this report, signal messenger generation in Ehrlich cells by the sublytic terminal complement complexes (TCC), C5b-9, C5b-8, and C5b-7, was further examined, as well as the role of signal messengers in stimulating elimination of TCC from the cell surface. Changes in cytosolic Ca2+ were monitored in individual cells after a single dose of C5b-9 by digital imaging fluorescence microscopy that revealed oscillations in cytosolic Ca2+ over a period of 10 min. Sublytic C5b-9 substantially increased protein kinase C (PKC) activity at an external Ca2+ concentration of 1.5 mM. C5b-9-mediated PKC activation could be inhibited by 60 to 80% when external Ca2+ was reduced to 0.015 mM. C5b-8, but not C5b-7, activated PKC to a lesser extent. C5b-8 and C5b-7 also stimulated an increase in cAMP. Rapid elimination of TCC known to be stimulated by Ca2+ signal was partially inhibited by protein kinase inhibitors, H-7 and to a lesser extent by HA1004, suggesting a role for PKC in the elimination response. TCC elimination was not accelerated by agents that increase cAMP.  相似文献   

13.
In many cell types membrane receptors for hormones or neurotransmitters activate a signal transduction pathway which releases Ca2+ from intracellular Ca2+ stores by the second messenger inositol 1,4,5-trisphosphate. As a consequence store-operated Ca2+ entry (SOCE) becomes activated. In the present study we addressed the question if receptor/agonist binding can modulate Ca2+ entry by mechanisms different from the store-operated one. Therefore SOCE was examined in HEK293 cells microscopically with the fura-2 technique and with patch clamp. We found that maximally preactivated SOCE could, concentration dependently, be reduced up to 80% by the muscarinic agonist acetylcholine when the cytoplasmic Ca2+ concentration was used as a measure. Muscarinic receptors seem to mediate this decrease since atropine blocked the effect completely and cell types without muscarinic receptors (BHK21, CHO) did not show acetylcholine-induced decrease of Ca2+ entry. Moreover expression of muscarinic receptor subtypes M1 and M3 in BHK21 cells established the muscarinic decrease of SOCE. Electrical measurements revealed that the membrane potential of HEK293 cells did not show any response to ACh, excluding that changes of driving forces are responsible for the block of Ca2+ entry. In contrast the electrical current which is responsible for SOCE in HEK293 cells (Ca2+ release-activated Ca2+ current (I(CRAC)) was inhibited (maximally 55%) by 10 microM ACh. From these data we conclude that in HEK293 cells a muscarinic signal transduction pathway exists which decreases the cytoplasmic Ca2+ concentration by an inhibition of I(CRAC). This mechanism may serve as a modulator of Ca2+ entry preventing a Ca2+ overload of the cytoplasm after Ca2+ store depletion.  相似文献   

14.
It is generally assumed that the functional consequences of stimulation with Ca2+ -mobilizing agonists are derived exclusively from the second messenger action of intracellular Ca2+, acting on targets inside the cells. However, during Ca2+ signaling events, Ca2+ moves in and out of the cell, causing changes not only in intracellular Ca2+, but also in local extracellular Ca2+. The fact that numerous cell types possess an extracellular Ca2+ "sensor" raises the question of whether these dynamic changes in external [Ca2+] may serve some sort of messenger function. We found that in intact gastric mucosa, the changes in extracellular [Ca2+] secondary to carbachol-induced increases in intracellular [Ca2+] were sufficient and necessary to elicit alkaline secretion and pepsinogen secretion, independent of intracellular [Ca2+] changes. These findings suggest that extracellular Ca2+ can act as a "third messenger" via Ca2+ sensor(s) to regulate specific subsets of tissue function previously assumed to be under the direct control of intracellular Ca2+.  相似文献   

15.
Ca2+在植物细胞对逆境反应和适应中的调节作用   总被引:5,自引:0,他引:5  
简令成  王红 《植物学报》2008,25(3):257-267
钙离子(Ca2+ )信号在植物的生长发育及其对环境的反应和适应中起着十分重要的作用。本文对Ca2+在植物细胞对低温、干旱和盐渍化逆境的反应和适应中的调节功能作一概述, 论述的主要问题包括: (1)Ca2+的亚细胞定位与分布, 细胞内Ca2+相对低水平的稳态平衡是Ca2+信号发生的基础; (2)Ca2+信号的优越性及其发生与传递; (3)Ca2+充当低温信号的传递者诱导抗寒锻炼和基因表达; (4)细胞内高水平Ca2+持久性调控越冬木本植物的生理休眠; (5)Ca2+对干旱、盐渍化及其渗透胁迫的调节作用; (6)Ca2+参与气孔开关运动的调节; (7)Ca2+参与逆境中细胞壁加厚和加固的调节。  相似文献   

16.
Stimuli which act through the second messenger inositol 1,4,5-trisphosphate (InsP3) often increase free intracellular Ca2+ concentration ([Ca2+]i) in a localized subcellular area. Actively propagated Ca2+ waves then extend this focal Ca2+ signal to other parts of the cell. To understand how cells may control the spatial distribution of Ca2+, we investigated the mechanism by which Ca2+ waves propagate through the cytoplasm of Xenopus oocytes. Heparin, which inhibits the binding of InsP3 to its receptor, prevented the migration of Ca2+ waves induced by a poorly metabolized InsP3 (InsP3S3). This result suggested that Ca2+ waves move through the cell via the serial release of Ca2+ from InsP3-sensitive stores. Interventions which caused a localized increase in [Ca2+]i without elevations of InsP3 did not trigger Ca2+ waves. In the presence of a Ins-P3S3, however, endogenously released or locally injected Ca2+ elicited Ca2+ waves. A cooperative interaction between Ca2+ and InsP3 may therefore be responsible for the propagation of Ca2+ waves.  相似文献   

17.
The role of [Ca2+]i as a second messenger in non-excitable cells has been appreciated for almost 3 decades. The advent of fluorescent Ca2+ indicators has allowed the monitoring of Ca2+ signalling in suspensions of these cells. Agonist mediated changes in [Ca2+]i usually show an initial Ca2+ transient followed by a maintained increase. The former has been shown to be due to Ca2+ release from one or more intracellular stores, the latter due to activation of receptor operated Ca2+ entry (ROCE). More recently it has been recognized that many cells show distinct maintained oscillatory behavior when examined by single cell optical methods. It is proposed here that these oscillations are the consequence of IP3 and Ca2+ stimulation of Ca2+ release and ligand activation of ROCE followed by Ca2+ inhibition of Ca2+ and ROCE as Ca2+ pumps are activated. These oscillations allow more exact regulation of a pump/leak controlled second messenger such as [Ca2+]i.  相似文献   

18.
Ca2+与植物抗旱性的关系   总被引:1,自引:0,他引:1  
关军锋  李广敏 《植物学报》2001,18(4):473-478
干旱是制约植物生长发育的主要逆境因素,并抑制根系对钙的吸收。近年来研究表明,外源钙能提高植株的抗旱性,抑制干旱胁迫下活性氧物质的生成,保护细胞质膜的结构,维持正常的光合作用,以及调节激素和一些重要的生化物质代谢;此外,细胞内Ca2+可作为第二信使传递干旱信号,调节干旱胁迫导致的生理反应。  相似文献   

19.
胞外Ca2+信号——动植物中的第一信使   总被引:3,自引:0,他引:3  
赵昕  裴真明  何奕昆 《遗传》2007,29(3):269-275
钙离子作为重要的胞内第二信使, 控制着许多细胞的功能, 人们对此已经研究得比较深入。然而最近发现的一些细胞表面胞外Ca2+探测器使我们想到是否在胞外环境中, 钙离子也具有信号分子的功能。钙离子传感器包括已经研究得比较清楚的胞外Ca2+敏感受体—最初从甲状旁腺分离的G-耦联蛋白受体(CaR), 另外, 还有其他受体、通道和膜蛋白也都对胞外[Ca2+]的变化很敏感。最近从拟南芥保卫细胞中克隆到一个胞外钙离子受体蛋白(CAS), 通过胞外钙离子的变化引起胞内钙离子信号。这些受体蛋白的克隆, 使人们确信Ca2+在细胞中可以发挥第一信使的功能。  相似文献   

20.
Calcium signaling in restricted diffusion spaces.   总被引:4,自引:0,他引:4  
One- and two-dimensional models of Ca2+ diffusion and regulation were developed and used to study the magnitudes and the spatial and temporal characteristics of the Ca2+ transients that are likely to develop in smooth muscle cells in restricted diffusion spaces between the plasma membrane and intracellular organelles. Simulations with the models showed that high [Ca2+] (on the order of several microM) can develop in such spaces and persist for 100-200 ms. These Ca2+ transients could: 1) facilitate the coupling of Ca2+ influx to intracellular Ca2+ release; 2) provide a mechanism for the regulation of stored Ca2+ that does not affect the contractile state of smooth muscle; 3) locally activate specific signal transduction pathways, before, or without activating other Ca2+ dependent pathways in the central cytoplasm of the cell. The latter possibility suggests that independent enzymatic processes in cells could be differentially regulated by the same intracellular second messenger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号