首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
In this study, we investigate the role of liver X receptor alpha (LXR alpha) in lipogenesis in geese in order to understand the differences in hepatic steatosis mechanisms between mammals and waterfowl. Primary goose hepatocytes were isolated and treated with the LXR alpha agonist T0901317. Triglyceride (TG) accumulation, acetyl-CoA carboxylase alpha (ACC alpha) and fatty acid synthase (FAS) activities, and gene expression levels of LXR alpha, sterol regulatory element-binding proteins-1 (SREBP-1), FAS, ACC alpha and lipoprotein lipase (LPL) were measured in primary hepatocytes. We found a dose-dependent up-regulation of TG accumulation, ACC, and FAS activities and the mRNA levels of LXR alpha, SREBP-1, FAS, ACC alpha, and LPL genes in the presence of To-901317. We also found that binding of nuclear SREBP-1 to ACC alpha SRE sequence was induced by To-901317 (P < 0.05). In conclusion, LXR alpha is involved in the induction of the lipogenic pathway through activation of SREBP-1 and its target genes in goose primary hepatocytes.  相似文献   

11.
Most breast cancers exhibit brisk lipogenesis, and require it for growth. S14 is a lipogenesis-related nuclear protein that is overexpressed in most breast cancers. Sterol response element-binding protein-1c (SREBP-1c) is required for induction of lipogenesis-related genes, including S14 and fatty acid synthase (FAS), in hepatocytes, and correlation of SREBP-1c and FAS expression suggested that SREBP-1c drives lipogenesis in tumors as well. We directly tested the hypothesis that SREBP-1c drives S14 expression and mediates lipogenic effects of progestin in T47D breast cancer cells. Dominant-negative SREBP-1c inhibited induction of S14 and FAS mRNAs by progestin, while active SREBP-1c induced without hormone and superinduced in its presence. Changes in S14 mRNA were reflected in protein levels. A lag time and lack of progestin response elements indicated that S14 and FAS gene activation by progestin is indirect. Knockdown of S14 reduced, whereas overexpression stimulated, T47D cell growth, while nonlipogenic MCF10a mammary epithelial cells were not growth-inhibited. These data directly demonstrate that SREBP-1c drives S14 gene expression in breast cancer cells, and progestin magnifies that effect via an indirect mechanism. This supports the prediction, based on S14 gene amplification and overexpression in breast tumors, that S14 augments breast cancer cell growth and survival.  相似文献   

12.
13.
Insulin receptor substrate-1 (IRS-1) plays an essential role in mediating the insulin signals that trigger mitogenesis, lipid synthesis, and uncoupling protein-1 gene expression in mouse brown adipocytes. Expression of IRS-3 is restricted mainly to white adipose tissue; expression of this IRS protein is virtually absent in brown adipocytes. We have tested the capacity of IRS-3 to mediate insulin actions in IRS-1-deficient brown adipocytes. Thus, we expressed exogenous IRS-3 in immortalized IRS-1-/- brown adipocytes at a level comparable with that of endogenous IRS-3 in white adipose tissue. Under these conditions, IRS-3 signaling in response to insulin was observed, as revealed by tyrosine phosphorylation of IRS-3, and the activation of phosphatidylinositol (PI) 3-kinase associated with this recombinant protein. However, although insulin promoted the association of Grb-2 with recombinant IRS-3 in IRS-1-/- cells, the exogenous expression of this IRS family member failed to activate p42/44 MAPK and mitogenesis in brown adipocytes lacking IRS-1. Downstream of PI 3-kinase, IRS-3 expression restored insulin-induced Akt phosphorylation, which is impaired by the lack of IRS-1 signaling. Whereas the generation of IRS-3 signals enhanced adipocyte determination and differentiation-dependent factor 1/sterol regulatory element-binding protein (ADD-1/SREBP-1c) and fatty acid synthase mRNA and protein expression, activation of this pathway was unable to reconstitute CCAAT/enhancer-binding protein alpha and uncoupling protein-1 transactivation and gene expression in response to insulin. Similar results were obtained following insulin-like growth factor-I stimulation. In brown adipocytes expressing the IRS-3F4 mutant, the association of the p85alpha regulatory subunit via Src homology 2 binding was lost, but insulin nevertheless induced PI 3-kinase activity and Akt phosphorylation in a wortmannin-dependent manner. In contrast, activation of IRS-3F4 signaling failed to restore the induction of ADD-1/SREBP-1c and fatty acid synthase gene expression in IRS-1-deficient brown adipocytes. These studies demonstrate that recombinant IRS-3 may reconstitute some, but not all, of the signals required for insulin action in brown adipocytes. Thus, our data further implicate a unique role for IRS-1 in triggering insulin action in brown adipocytes.  相似文献   

14.
15.
The sterol regulatory element binding protein 1 (SREBP-1) is regarded as a major factor involved in the nutritional regulation of lipogenesis. The aim of the present work was to demonstrate its involvement in the response of key genes of glucose and lipid metabolism in liver, adipose tissue, and skeletal muscle during fasting and refeeding. The regulation of hexokinase-2 (HKII) was investigated as a marker of the glucose metabolic pathway and that of FAS was investigated as a marker of the lipogenic pathway. The in vivo association of SREBP-1 with the promoter regions of these genes was determined in the different tissues using chromatin immunoprecipitation assays. Fasting decreased, and refeeding restored, FAS and HKII mRNA and protein levels in each tissue. The concomitant measurement of SREBP-1a and SREBP-1c mRNA levels, of mature SREBP-1 protein abundance in nuclear extracts, and of SREBP-1 interaction with target promoters led to the conclusion that SREBP-1 plays a major role in the response of FAS and HKII genes to nutritional regulation in rodents. These data elucidate the important role of SREBP-1 not only in the regulation of lipid metabolism but also of glucose metabolism and energy homeostasis.  相似文献   

16.
17.
To elucidate the physiological role of sterol regulatory element-binding protein-1 (SREBP-1), the hepatic mRNA levels of genes encoding various lipogenic enzymes were estimated in SREBP-1 gene knockout mice after a fasting-refeeding treatment, which is an established dietary manipulation for the induction of lipogenic enzymes. In the fasted state, the mRNA levels of all lipogenic enzymes were consistently low in both wild-type and SREBP-1(-/-) mice. However, the absence of SREBP-1 severely impaired the marked induction of hepatic mRNAs of fatty acid synthetic genes, such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase, that was observed upon refeeding in the wild-type mice. Furthermore, the refeeding responses of other lipogenic enzymes, glycerol-3-phosphate acyltransferase, ATP citrate lyase, malic enzyme, glucose-6-phosphate dehydrogenase, and S14 mRNAs, were completely abolished in SREBP-1(-/-) mice. In contrast, mRNA levels for cholesterol biosynthetic genes were elevated in the refed SREBP-1(-/-) livers accompanied by an increase in nuclear SREBP-2 protein. When fed a high carbohydrate diet for 14 days, the mRNA levels for these lipogenic enzymes were also strikingly lower in SREBP-1(-/-) mice than those in wild-type mice. These data demonstrate that SREBP-1 plays a crucial role in the induction of lipogenesis but not cholesterol biosynthesis in liver when excess energy by carbohydrates is consumed.  相似文献   

18.
19.
20.
Glucose uptake into adipose and liver cells is known to up-regulate mRNA levels for various lipogenic enzymes such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). To determine whether the hexosamine biosynthesis pathway (HBP) mediates glucose regulation of mRNA expression, we treated primary cultured adipocytes for 18 h with insulin (25 ng/ml) and either glucose (20 mm) or glucosamine (2 mm). A ribonuclease protection assay was used to quantitate mRNA levels for FAS, ACC, and glycerol-3-P dehydrogenase (GPDH). Treatment with insulin and various concentrations of d-glucose increased mRNA levels for FAS (280%), ACC (93%), and GPDH (633%) in a dose-dependent manner (ED50 8-16 mm). Mannose similarly elevated mRNA levels, but galactose and fructose were only partially effective. l-glucose had no effect. Omission of glutamine from the culture medium markedly diminished the stimulatory effect of glucose on mRNA expression. Since glutamine is a crucial amide donor in hexosamine biosynthesis, we interpret these data to mean that glucose flux through the HBP is linked to regulation of lipogenesis through control of gene expression. Further evidence for hexosamine regulation was obtained using glucosamine, which is readily transported into adipocytes where it directly enters the HBP. Glucosamine was 15-30 times more potent than glucose in elevating FAS, ACC, and GPDH mRNA levels (ED50 approximately 0.5 mm). In summary: 1) GPDH, FAS, and ACC mRNA levels are upregulated by glucose; 2) glucose-induced up-regulation requires glutamine; and 3) mRNA levels for lipogenic enzymes are up-regulated by glucosamine. Hyperglycemia is the hallmark of diabetes mellitus and leads to insulin resistance, impaired glucose metabolism, and dyslipidemia. We postulate that disease pathophysiology may have a common underlying factor, excessive glucose flux through the HBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号