首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Batch culture experiments with the cyanobacterium Microcystis aeruginosa PCC 7806 were performed in order to test the hypothesis that microcystins (MCYSTs) are produced in response to a relative deficiency of intracellular inorganic carbon (C(i,i)). In the first experiment, MCYST production was studied under increased C(i,i) deficiency conditions, achieved by restricting sodium-dependent bicarbonate uptake through replacement of sodium bicarbonate in the medium with its potassium analog. The same experimental approach was used in a second experiment to compare the response of the wild-type strain M. aeruginosa PCC 7806 with its mcyB mutant, which lacks the ability to produce MCYSTs. In a third experiment, the impact of varying the C(i,i) status on MCYST production was examined without suppressing the sodium-dependent bicarbonate transporter; instead, a detailed investigation of a dark-light cycle was performed. In all experiments, a relative C(i,i) deficiency was indicated by an elevated variable fluorescence signal and led to enhanced phycocyanin cell quotas. Higher MCYST cell quotas (in the first and third experiments) and increased total (intracellular plus extracellular) MCYST production (in the first experiment) were detected with increased C(i,i) deficiency. Furthermore, the MCYST-producing wild-type strain and its mcyB mutant showed basically the same response to restrained inorganic carbon uptake, with elevated variable fluorescence and phycocyanin cell quotas with increased C(i,i) deficiency. The response of the wild type, however, was distinctly stronger and also included elevated chlorophyll a cell quotas. These differences indicate the limited ability of the mutant to adapt to low-C(i,i) conditions. We concluded that MCYSTs may be involved in enhancing the efficiency of the adaptation of the photosynthetic apparatus to fluctuating inorganic carbon conditions in cyanobacterial cells.  相似文献   

2.
A 42-kilodalton cytoplasmic membrane protein is synthesized when high CO2-grown cells of Synechococcus PCC 7942 (Anacystis nidulans R2) are exposed to low CO2. The structural gene for this protein (cmpA) has been cloned and sequenced and shown to encode a 450 amino acid polypeptide with a molecular mass of 49 kilodalton. A deletion mutant lacking the 42-kilodalton protein was obtained by transformation of Synechococcus PCC 7942 following in vitro mutagenesis of the cloned gene. There were no significant differences between the mutant and wild-type cells in their growth rates under either low or high CO2 conditions. The activity of inorganic carbon (Ci) transport in the mutant was as high as that in the wild-type strain. In both types of cells, CO2 was the main species of Ci transported and the activities of CO2 and HCO3 transport increased when high CO2-grown cells were exposed to low CO2. We conclude that the 42-kilodalton protein is not directly involved in the Ci-accumulating mechanism of Synechococcus PCC 7942.  相似文献   

3.
Climate change scenarios predict a doubling of the atmospheric CO2 concentration by the end of this century. Yet, how rising CO2 will affect the species composition of aquatic microbial communities is still largely an open question. In this study, we develop a resource competition model to investigate competition for dissolved inorganic carbon in dense algal blooms. The model predicts how dynamic changes in carbon chemistry, pH and light conditions during bloom development feed back on competing phytoplankton species. We test the model predictions in chemostat experiments with monocultures and mixtures of a toxic and non-toxic strain of the freshwater cyanobacterium Microcystis aeruginosa. The toxic strain was able to reduce dissolved CO2 to lower concentrations than the non-toxic strain, and became dominant in competition at low CO2 levels. Conversely, the non-toxic strain could grow at lower light levels, and became dominant in competition at high CO2 levels but low light availability. The model captured the observed reversal in competitive dominance, and was quantitatively in good agreement with the results of the competition experiments. To assess whether microcystins might have a role in this reversal of competitive dominance, we performed further competition experiments with the wild-type strain M. aeruginosa PCC 7806 and its mcyB mutant impaired in microcystin production. The microcystin-producing wild type had a strong selective advantage at low CO2 levels but not at high CO2 levels. Our results thus demonstrate both in theory and experiment that rising CO2 levels can alter the community composition and toxicity of harmful algal blooms.  相似文献   

4.
《BBA》1987,893(2):219-224
The effect of O2 on inorganic carbon (Ci) transport was studied with a high CO2-requiring mutant (E1) of Anacystis nidulans R2. Oxygen (above 2%) inhibited Ci transport by 15–35|X% at CO2 concentrations above 200 μl/l, but had no apparent effect at low, limiting CO2 concentration. The action spectra for Ci transport measured in the presence or absence of 20% O2 showed two peaks around 684 and 625 nm, corresponding to chlorophyll a and phycocyanin absorption, respectively. The difference between these two spectra (anaerobic minus aerobic) showed one peak around 625 nm, which indicates that a linear electron transport from water to O2 is involved in the O2 inhibition of Ci transport. Dithiothreitol could overcome the inhibition by O2. The results suggested that the O2 inhibition is a result of inactivation of the Ci-transporting system.  相似文献   

5.
A mutant of the cyanobacterium Synechocystis PCC 6803 was obtained by replacing the gene of the carboxylation enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) with that of the photosynthetic bacterium Rhodospirillum rubrum. This mutant consequently lacks carboxysomes — the protein complexes in which the original enzyme is packed. It is incapable of growing at atmospheric CO2 levels and has an apparent photosynthetic affinity for inorganic carbon (Ci) which is 1000 times lower than that of the wild type, yet it accumulates more Ci than the wild type. The mutant appears to be defective in its ability to utilize the intracellular Ci pool for photosynthesis. Unlike the carboxysomal carboxylase activity of Rubisco, which is almost insensitive to inhibition by O2 in vitro, the soluble enzyme is competitively inhibited by O2. The photosynthetic rate and Ci compensation point of the wild type were hardly affected by low O2 levels. Above 100 μM O2, however, both parameters became inhibited. The CO2 compensation point of the mutant was linearly dependent on O2 concentration. The higher sensitivity of the mutant to O2 inhibition than that expected from in-vitro kinetics parameters of Rubisco, indicates a low capacity to recycle photorespiratory metabolites to Calvin-cycle intermediates.  相似文献   

6.
Cyanobacterial cells accumulate substantial amounts of a membrane-associated 42 kilodalton polypeptide during adaptation to low CO2 conditions. The role of this polypeptide in the process of adaptation and in particular in the large increase in the ability to accumulate inorganic carbon (Ci), which accompanies this process, is not yet understood. We have isolated a mutant Synechococcus PCC7942 that does not accumulate the 42 kilodalton polypeptide. The mutant requires a high-CO2 concentration for growth and exhibits a very low apparent photosynthetic affinity for extracellular Ci. The latter might be attributable to the observed defective ability of the mutant to utilize the intracellular Ci pool for photosynthesis. The 42 kilodalton polypeptide does not appear to participate directly in the active transport of Ci, since the difference between the observed capabilities for CO2 and HCO3 uptake of the mutant and the wild type is not sufficient to account for their different growth and photosynthetic performance. Furthermore, high CO2-grown wild-type cells, where we could not detect the 42 kilodalton polypeptide, transported CO2 faster than the mutant. An analysis of the curves relating the rate of accumulation of Ci to the concentration of CO2 or HCO3 supplied, in the presence or absence of carbonic anhydrase, indicated that under the experimental conditions used here, CO2 was the preferred Ci species taken up by Synechococcus.  相似文献   

7.
The effects of microcystins on Daphnia galeata, a typical filter-feeding grazer in eutrophic lakes, were investigated. To do this, the microcystin-producing wild-type strain Microcystis aeruginosa PCC7806 was compared with a mcy PCC7806 mutant, which could not synthesize any variant of microcystin due to mutation of a microcystin synthetase gene. The wild-type strain was found to be poisonous to D. galeata, whereas the mcy mutant did not have any lethal effect on the animals. Both variants of PCC7806 were able to reduce the Daphnia ingestion rate. Our results suggest that microcystins are the most likely cause of the daphnid poisoning observed when wild-type strain PCC7806 is fed to the animals, but these toxins are not responsible for inhibition of the ingestion process.  相似文献   

8.
《Harmful algae》2011,10(6):613-619
Photosynthetic response of Microcystis aeruginosa PCC7806 to different concentrations of phosphorus supply was studied so as to elucidate if the declining process of Microcystis bloom under freshwater ecosystem is related to soluble reactive phosphorus (SRP) decrease in water volume. Growth rate of M. aeruginosa PCC7806 was significantly reduced under P-deficient conditions, and its photosynthetic activity in terms of rETRmax (maximum electron transport rate) decreased significantly after 48 h growth, while it kept elevating and reached to a relative stable value when supplied with rich phosphorus of 0.6 mg/L. With the increasing actinic irradiance along the rapid light curves of M. aeruginosa PCC7806 cultured under low-phosphorus level, qP (photochemical quenching) and rETR (relative electron transport rate) decreased greatly, and the increase in qN (non-photochemical quenching) and ΦPS (actual photochemical efficiency of PSII) was obviously inhibited. The affinity of M. aeruginosa PCC7806 to inorganic carbon was reduced evidently in 0.02 mg/L P compared with in 0.6 mg/L P. When P was reduced from 0.6 to 0.02 mg/L, the decreasing rate of rETRmax (77%) was significantly greater than that of photosynthetic carbon assimilation (22%), which indicated that down-regulation of CO2 affinity caused by P-deficiency was, but not the only reason that resulted in the decline of photosynthetic efficiency. Instantaneous low-temperature significantly limited rETRmax under rich-P condition but had no effect on it when P was insufficient, and 1% ethanol could enhance rETRmax at low-P level but did not influence it at rich-P level. These two results proved that the decrease in thylakoid membrane fluidity caused by P-deficiency was another important reason that results in the decline of photosynthetic efficiency of M. aruginosa PCC7806.  相似文献   

9.
10.
11.
Cells of the cyanobacterium, Synechococcus PCC7942, grown under high inorganic carbon (Ci) conditions (1% CO2; pH 8) were found to be photosynthetically dependent on exogenous CO2. This was judged by the fact that they had a similar photosynthetic affinity for CO2 (K0.5[CO2] of 3.4-5.4 micromolar) over the pH range 7 to 9 and that the low photosynthetic affinity for Ci measured in dense cell suspensions was improved by the addition of exogenous carbonic anhydrase (CA). The CA inhibitor, ethoxyzolamide (EZ), was shown to reduce photosynthetic affinity for CO2 in high Ci cells. The addition of 200 micromolar EZ to high Ci cells increased K0.5(CO2) from 4.6 micromolar to more than 155 micromolar at pH 8.0, whereas low Ci cells (grown at 30 microliters CO2 per liter of air) were less sensitive to EZ. EZ inhibition in high and low Ci cells was largely relieved by increasing exogenous Ci up to 100 millimolar. Lipid soluble CA inhibitors such as EZ and chlorazolamide were shown to be the most effective inhibitors of CO2 usage, whereas water soluble CA inhibitors such as methazolamide and acetazolamide had little or no effect. EZ was found to cause a small drop in photosystem II activity, but this level of inhibition was not sufficient to explain the large effect that EZ had on CO2 usage. High Ci cells of Anabaena variabilis M3 and Synechocystis PCC6803 were also found to be sensitive to 200 micromolar EZ. We discuss the possibility that the inhibitory effect of EZ on CO2 usage in high Ci cells of Synechococcus PCC7942 may be due to inhibition of a `CA-like' function associated with the CO2 utilizing Ci pump or due to inhibition of an internal CA activity, thus affecting CO2 supply to ribulose bisphosphate carboxylase-oxygenase.  相似文献   

12.
A high CO2-requiring mutant of Synechocystis PCC6803 (G3) capable of Ci transport but unable to utilize the intracellular Ci pool for photosynthesis was constructed. A DNA clone of 6.1 kbp that transforms the G3 mutant to the wild-type phenotype was isolated from a Synechocystis PCC6803 genomic library. Complementation test with subclones allocated the mutation site within a DNA fragment of 674 bp nucleotides. Sequencing analysis of the mutation region elucidated an open reading frame encoding a 534 amino-acid protein with a significant sequence homology to the protein coded by the ccmN gene of Synechococcus PCC7942. The ccmM-like gene product of Synechocystis PCC6803 contains four internal repeats with a week similarity to the rbcS gene product. An open reading frame homologous to the ccmN gene of Synechococcus PCC7942 was found downstream to the ccmM-like gene. As opposed to the Synechococcus PCC7942 ccmM and ccmN genes located 2 kbp upstream to, and oriented in the same direction as, the rbc operon, the ccm-like genes in Synechocystis PCC6803 are not located within 22 kbp upstream to the rbcL gene of the Rubisco operon. Thus, despite the resemblance in clustering of the ccmM and ccmN genes in both cyanobacterial species, the difference in their genomic location relative to the rbc genes demonstrates variability in structural organization of the genes involved in inorganic carbon acquisition.Abbreviations CCM CO2-concentrating mechanism - Ci inorganic carbon - HCR high CO2-requiring - kbp kilobase pair - ORF open reading frame - Rubisco ribulose 1,5-bisphosphate carboxylase-oxygenase gene - SSC sodium chloride and sodium citrate - WT wild-type  相似文献   

13.
Cell quotas of microcystin (QMCYST; femtomoles of MCYST per cell), protein, and chlorophyll a (Chl a), cell dry weight, and cell volume were measured over a range of growth rates in N-limited chemostat cultures of the toxic cyanobacterium Microcystis aeruginosa MASH 01-A19. There was a positive linear relationship between QMCYST and specific growth rate (μ), from which we propose a generalized model that enables QMCYST at any nutrient-limited growth rate to be predicted based on a single batch culture experiment. The model predicts QMCYST from μ, μmax (maximum specific growth rate), QMCYSTmax (maximum cell quota), and QMCYSTmin (minimum cell quota). Under the conditions examined in this study, we predict a QMCYSTmax of 0.129 fmol cell−1 at μmax and a QMCYSTmin of 0.050 fmol cell−1 at μ = 0. Net MCYST production rate (RMCYST) asymptotes to zero at μ = 0 and reaches a maximum of 0.155 fmol cell−1 day−1 at μmax. MCYST/dry weight ratio (milligrams per gram [dry weight]) increased linearly with μ, whereas the MCYST/protein ratio reached a maximum at intermediate μ. In contrast, the MCYST/Chl a ratio remained constant. Cell volume correlated negatively with μ, leading to an increase in intracellular MCYST concentration at high μ. Taken together, our results show that fast-growing cells of N-limited M. aeruginosa are smaller, are of lower mass, and have a higher intracellular MCYST quota and concentration than slow-growing cells. The data also highlight the importance of determining cell MCYST quotas, as potentially confusing interpretations can arise from determining MCYST content as a ratio to other cell components.  相似文献   

14.
The biological process for phosphate (Pi) removal is based on the use of bacteria capable of accumulating inorganic polyphosphate (polyP). We obtained Escherichia coli mutants which accumulate a large amount of polyP. The polyP accumulation in these mutants was ascribed to a mutation of the phoU gene that encodes a negative regulator of the Pi regulon. Insertional inactivation of the phoU gene also elevated the intracellular level of polyP in Synechocystis sp. strain PCC6803. The mutant could remove fourfold more Pi from the medium than the wild-type strain removed.  相似文献   

15.
Active human carbonic anhydrase II (HCAII) protein was expressed in the cyanobacterium Synechococcus PCC7942 by means of transformation with the bidirectional expression vector, pCA. This expression was driven by the bacterial Tac promoter and was regulated by the IacIQ repressor protein, which was expressed from the same plasmid. Expression levels reached values of around 0.3% of total cell protein and this protein appeared to be entirely soluble in nature and located within the cytosol of the cell. The expression of this protein has dramatic effects on the photosynthetic physiology of the cell. Induction of expression of carbonic anhydrase (CA) activity in both high dissolved inorganic carbon (Ci) and low Ci grown cells leads the creation of a high Ci requiring phenotype causing: (a) a dramatic increase in the K0.5 (Ci) for photosynthesis, (b) a loss of the ability to accumulate internal Ci, and (c) a decrease in the lag between the initial Ci accumulation following illumination and the efflux of CO2 from the cells. In addition, the effects of the expressed CA can largely be reversed by the carbonic anhydrase inhibitor ethoxyzolamide. As a result of the above findings, it is concluded that the CO2 concentrating mechanism in Synechococcus PCC7942 is largely dependent on (a) the absence of CA activity from the cytosol, and (b) the specific localization of CA activity in the carboxysome. A theoretical model of photosynthesis and Ci accumulation is developed in which the carboxysome plays a central role as both the site of CO2 generation from HCO3 and a resistance barrier to CO2 efflux from the cell. There is good qualitative agreement between this model and the measured physiological effects of expressed cytosolic CA in Synechococcus cells.  相似文献   

16.
The requirement of the inorganic carbon (Ci) transport system for light in cyanobacteria was investigated in Anabaena variabilis by the filtering centrifugation technique and in a mutant (E1) isolated from Anacystis nidulans using a gas exchange system. Ci transport capability increased with time of preillumination and decreased following darkening. Full activity could not be obtained by operating either photosystem II (PSII) or photosystem I alone. 3(3,4 Dichlorophenyl)-1,1 dimethylurea strongly inhibited Ci uptake. Very low activity of PSII was sufficient to activate Ci uptake. However, in the presence of dithiothreitol PSII activity was not required. We conclude that light may be required to activate as well as to energize Ci uptake in cyanobacteria.  相似文献   

17.
18.
Effects of environmental variations on microcystin (MCYST) production were tested by evaluating results obtained from batch culture experiments with Microcystis aeruginosa MASH-01A19. Time series of cell and MCYST concentrations were evaluated independently with two models, a static linear and a dynamic non-linear model. Significant influences of irradiance, sulphur and phosphorus (Pi) supply on MCYST production were identified and notably, these effects occurred independently of influences on growth rate. Specifically, effects on the two main parameters intrinsic growth rate and MCYST production coefficient were inversely correlated. With increasing irradiance and Pi supply MCYST production was reduced. By contrast, MCYST production was lowered when sulphur was depleted. Since MCYST production was influenced by more than one environmental variable it is suggested that MCYST is under multiple regulation. A well-distinguishable control of MCYST production by one environmental factor can be excluded. All the observed effects on MCYST production do not disagree with earlier findings that MCYST may be involved in processes linked to photosynthesis.  相似文献   

19.
A spontaneous mutant of the cyanobacterium Synechocystis PCC6803 was isolated for its resistance to acetazolamide, an inhibitor of carbonic anhydrase. The mutant showed a deficiency in oxygen exchange between CO2 and H2O, a lower level of stable internal CO2 pool and a decreased capacity to adapt its photosynthetic affinity under limited inorganic carbon regime. The initial rate of uptake of inorganic carbon was identical to that of wild-type cells. It is demonstrated that the mutation affects the carbonic anhydrase activity. This could result from either of two impairments: a deficiency in the enzyme activity detectable by mass spectrometric determinations, or a modification of the cellular compartment in which the enzyme is located, preventing its activity.  相似文献   

20.
The interactive effects of inorganic carbon status, temperature and light on chlorosis induced by nitrogen deficiency, and the roles of Clp proteases in this process were investigated. In wild-type cultures grown in high or ambient CO2, following transfer to media lacking combined nitrogen, phycocyanin per cell dropped primarily through dilution of the pigment through cell division, and also suffered variable degrees of net degradation. When grown at high CO2 (5%), chlorophyll (Chl) suffered net degradation to a greater extent than phycocyanin. In marked contrast, growth at ambient CO2 resulted in Chl per cell dropping through dilution. Conditions that drove net Chl degradation in the wild-type resulted in little or no net Chl degradation in a clpPI inactivation mutant, with Chl content dropping largely through growth dilution in the mutant. The chlorotic response of a clpPII inactivation strain was nearly the same as that of wild-type, although phycocyanin degradation may have been slightly accelerated in the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号