首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourier transform infrared spectra were obtained for mammalian calmodulin and two of its fragments produced by limited proteolysis with trypsin TR1C (1–77) and TR2C (78–148). Experiments were done in H2O, D2O and D2O/trifluoroethanol (TFE) mixtures. Information about secondary structure was obtained from analysis of the amide I and II bands; while characteristic absorbances for tyrosine, phenylalanine and carboxylate groups were analyzed for changes in tertiary structure. Our data indicate that the secondary and tertiary structure is preserved in the two half molecules of CaM, both in the apo- and Ca2+-saturated state. Addition of the structure-inducing solvent TFE causes marked changes only in the apo-TR1C domain. The maximum wavenumber for the amide I band of the two domains of CaM in D20 was markedly different (1642 cm–1 for TR1C versus 1646/1648 cm–1 for Ca 2+ and apo-TR2C). This renders the amide I band for the intact protein very broad in comparison to that in other proteins and is indicative of a distribution of -helices with slightly different hydrogen bonding patterns.  相似文献   

2.
Holophosphorylase kinase was digested with Glu-C specific protease; from the peptide mixture calmodulin binding peptides were isolated by affinity chromatography and identified by N-terminal sequence analysis. Two peptides originating from the subunit, having a high tendency to form a positively charged amphiphilic helix and containing tryptophane, were synthesized. Additionally, a homologous region of the subunit and a peptide from the subunit present in a region deleted in the isoform were also selected for synthesis. Binding stoichiometry and affinity were determined by following the enhancement in tryptophane fluorescence occurring upon 1:1 complex formation between these peptides and calmodulin. Finally, Ca2+ binding to calmodulin in presence of peptides was measured. By this way, the peptides 542–566, 547–571, 660–677 and 597–614 have been found to bind specifically to calmodulin.Together with previously predicted and synthesized calmodulin binding peptides four calmodulin binding regions have been characterized on each the and subunits. It can be concluded that endogenous calmodulin can bind to two calmodulin binding regions in as well as to two regions in and . Exogenous calmodulin can bind to two regions in and in . A binding stoichiometry of 0.8mol of calmodulin/ protomer of phosphorylase kinase has been determined by inhibiting the ubiquitination of calmodulin with phosphorylase kinase. Phosphorylase kinase is half maximally activated by 23nM calmodulin which is in the affinity range of calmodulin binding peptides from to calmodulin. Therefore, binding of exogenous calmodulin to activates the enzyme. A model for switching endogenous calmodulin between , and and modulation of ATP binding to as well as Mg2+/ADP binding to by calmodulin is presented.  相似文献   

3.
Calmodulin (CaM) is a Ca2+ signaling protein that binds to a wide variety of target proteins, and it is important to establish methods for rapid characterization of these interactions. Here we report the use of fluorescence polarization (FP) to measure the Kd for the interaction of CaM with the plasma membrane Ca2+-ATPase (PMCA), a Ca2+ pump regulated by binding of CaM. Previous assays of PMCA-CaM interactions were indirect, based on activity or kinetics measurements. We also investigated the Ca2+ dependence of CaM binding to PMCA. FP assays directly detect CaM-target interactions and are rapid, sensitive, and suitable for high-throughput screening assay formats. Values for the dissociation constant Kd in the nanomolar range are readily measured. We measured the changes in anisotropy of CaM labeled with Oregon Green 488 on titration with PMCA, yielding a Kd value of CaM with PMCA (5.8 ± 0.5 nM) consistent with previous indirect measurements. We also report the binding affinity of CaM with oxidatively modified PMCA (Kd = 9.8 ± 2.0 nM), indicating that the previously reported loss in CaM-stimulated activity for oxidatively modified PMCA is not a result of reduced CaM binding. The Ca2+ dependence follows a simple Hill plot demonstrating cooperative binding of Ca2+ to the binding sites in CaM.  相似文献   

4.
A multifunctional Ca2+/calmodulin dependent protein kinase was purified approximately 650 fold from cytosolic extract of Candida albicans. The purified preparation gave a single band of 69 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis with its native molecular mass of 71 kDa suggesting that the enzyme is monomeric. Its activity was dependent on calcium, calmodulin and ATP when measured at saturating histone IIs concentration. The purified Ca2+/CaMPK was found to be autophosphorylated at serine residue(s) in the presence of Ca2+/calmodulin and enzyme stimulation was strongly inhibited by W-7 (CaM antagonist) and KN-62 (Ca2+/CaM dependent PK inhibitor). These results confirm that the purified enzyme is Ca2+/CaM dependent protein kinase of Candida albicans. The enzyme phosphorylated a number of exogenous and endogenous substrates in a Ca2+/calmodulin dependent manner suggesting that the enzyme is a multifunctional Ca2+/calmodulin-dependent protein kinase of Candida albicans.  相似文献   

5.
The interaction between calmodulin (CaM) and Al(3+) was studied by spectroscopic methods. Heteronuclear two-dimensional NMR data indicated that peaks related to the both lobes and middle of the central helix of CaM are largely affected by Al(3+). But chemical shift perturbation suggested that overall conformation of Ca(2+)-loaded CaM is not changed by Al(3+) binding. It is thought that Al(3+) interaction to the middle of the central helix is a key for the property of CaM's target recognition. If the structure and/or flexibility of the central helix are/is changed by Al(3+), target affinity to CaM must be influenced by Al(3+). Thus, we performed surface plasmon resonance experiments to observe the effect of Al(3+) on the target recognition by CaM. The data clearly indicated that target affinity to CaM is reduced by addition of Al(3+). All the results presented here support a hypothesis that Al(3+) may affect on the Ca(2+) signaling pathway in cells.  相似文献   

6.
Biochemical and physiological studies have implicated cAMP and cAMP-dependent protein kinase (PKA) in a plethora of essential cellular processes. Here we show that yeast cells partially depleted of PKA activity (due to atpk w mutation) and bearing a lesion in a Golgi-localized Ca2+ pump (Pmr1), arrest division with a small bud. The bud morphology of the arrestedtpk1 w pmr1 mutant cells is characteristic of cells in S phase; however, the terminal phenotype of processes such as DNA replication and nuclear division suggests arrest at the G2/M boundary. This small bud, G2-arrest phenotype is similar to that of strains with a defect in cell wall biosynthesis (pkc1) or membrane biogenesis (och1); however, the biochemical defect may be different since thetpk1 w pmr1 double mutants retain viability. The growth defect of thetpk1 w pmr1 mutant can be alleviated by preventing the increase in cellular cAMP levels that is known to be associated with a decrease in PKA activity, or by supplementing the medium with millimolar amounts of Ca2+. Although the biochemical consequences of this increase in cAMP concentration are not known, the small-bud phenotype of the double mutant and the known protein processing defect of thepmr1 lesion suggest that the localization or function of some membrane component might be compromised and susceptible to perturbations in cellular cAMP levels. One candidate for such a protein is the cAMP-binding membrane ectoprotein recently described in yeast.  相似文献   

7.
Summary The Ca2+ channel blockers felodipine and bepridil are known to affect selectively functions of calmodulin. We studied their effects on calmodulin binding and ATPase activities of calmodulin-containing and calmodulin-depleted rabbit heart sarcolemma. Both drugs as well as the specific anti-calmodulin drug calmidazolium at a concentration of 50 µM, inhibited the Ca2+-stimulated calmodulin binding to calmodulin-depleted sarcolemma. Within the concentration range of 3 to 100 µM all three drugs also progressively inhibited Ca2+ pumping ATPase in calmodulin containing sarcolemma, although the enzyme was assayed at saturating Ca2+ (100 µM). The inhibitory potency of calmidazolium and bepridil, but not that of felodipine, increased when the membrane protein concentration in the ATPase assay was lowered. At low membrane protein concentration 30 µM calmidazolium completely blocked calmodulin-dependent Ca2+ pumping ATPase, whereas the inhibition caused by 30 µM felodipine or bepridil remained partially. A similar inhibition pattern of the drugs was found in the calmodulin binding experiments. Within a concentration range of 3 to 30 µM, all three drugs had negligible effects on the basal Ca2+ pumping ATPase which was measured in calmodulin-depleted sarcolemma. In conclusion, the characteristics of the anti-calmodulin action of felodipine on the rabbit heart sarcolemmal Ca2+ pumping ATPase are not different from those of bepridil. Both drugs may inhibit the enzyme by interference with the Ca2+-stimulated binding of calmodulin.Abbreviations Ca2+ pumping ATPase Ca2+ stimulated Mg2+-dependent ATP hydrolyzing activity - Na+ pumping ATPase Na+-stimulated K+- and Mg2+-dependent ATP hydrolyzing activity - Tris-maleate tris (hydroxymethyl) aminomethane hydrogen maleate - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Mes 2-(N-morpholino) ethane sulfonic acid and Egta, ethylene glycol bis (p-amino ethylether)-N,N,N,N tetraacetic acid  相似文献   

8.
We investigated the concentration- and Ca2+-dependent effects of CaM mutants, CaM12 and CaM34, in which Ca2+-binding to its N- and C-lobes was eliminated, respectively, on the CaV1.2 Ca2+ channel by inside-out patch clamp in guinea-pig cardiomyocytes. Both CaM12 and CaM34 (0.7-10 μM) applied with 3 mM ATP produced channel activity after “rundown”. Concentration-response curves were bell-shaped, similar to that for wild-type CaM. However, there was no obvious leftward shift of the curves by increasing [Ca2+], suggesting that both functional lobes of CaM were necessary for the Ca2+-dependent shift. However, channel activity induced by the CaM mutants showed Ca2+-dependent decrease, implying a Ca2+ sensor existing besides CaM. These results suggest that both N- and C-lobes of CaM are required for the Ca2+-dependent regulations of CaV1.2 Ca2+ channels.  相似文献   

9.
A high affinity Ca2+/Mg2+ ATPase has been identified and localized in synaptic membrane subfractions. This enzyme is stimulated by low concentrations of Ca2+ (1 M) believed to approximate the range of Ca2+ in the synaptosomal cytosol (0.1 to 5.0 M). The opiate agonist levorphanol, in a concentration-dependent fashion, inhibited Ca2+-stimulated ATP hydrolysis in lysed synaptic membranes. This inhibition was reversed by naloxone, while dextrorphan, the inactive opiate isomer, was without effect. Inhibition by levorphanol was most pronounced in a subfraction of synaptic membranes (SPM-1). The inhibition of Ca2+-stimulated ATP hydrolysis was characterized by a reduction inV max for Ca2+. Levorphanol pretreatment reduced the Hill coefficient (HN) of 1.5 to 0.7, suggesting cooperative interaction between the opiate receptor and the enzyme protein. Levorphanol, but not dextrorphan, also inhibited (28%) ATP-dependent Ca2+ uptake by synaptic membranes. Opiate ligand stereoisomers were tested for their effects on calmodulin stimulating of high affinity Ca2+/Mg2+ ATPase in synaptic membranes. Levorphanol (10 M), but not the inactive stereoisomer (+)dextrorphan, significantly inhibited (35%) the calmodulin-activated Ca2+-dependent ATP hydrolysis activity in a preparation of lysed synaptic membranes. Both Ca2+-dependent and calmodulin-dependent stimulation of the enzyme in the presence of optimal concentrations of the other co-substrate were inhibited by levorphanol (35–40%) but not dextrorphan. Inhibition of ATP hydrolysis was characterized by a reduction inV max for both Ca2+ and calmodulin stimulation of the enzyme. Calmodulin stimulation of enzyme activity was most pronounced in SPM-1, the membrane fraction which also exhibits the maximal opiate inhibition (40%) of the Ca2+-ATPase. The results demonstrate that opiate receptor activation inhibits a high affinity Ca2+/Mg2+ ATPase in synaptic plasma membranes in a stereospecific fashion. The inhibition of the enzyme may occur by a mechanism involving both Ca2+ and calmodulin. Inhibition of calmodulin activation may contribute to the mechanism by which opiate ligands disrupt synaptosomal Ca2+ buffering mechanisms. Changes in the cytosolic distribution of synaptosomal Ca2+ following inhibition of Ca2+/Mg2+ ATPase may underlie some of the pharmacological effects of opiate drugs.  相似文献   

10.
Ligand binding to transport sites constitutes the initial step in the catalytic cycle of transport ATPases. Here, we consider the well characterized Ca2+ ATPase of sarcoplasmic reticulum (SERCA) and describe a series of Ca2+ binding isotherms obtained by equilibrium measurements in the presence of various H+ and Mg2+ concentrations. We subject the isotherms to statistical mechanics analysis, using a model based on a minimal number of mechanistic steps. The analysis allows satisfactory fits and yields information on occupancy of the specific Ca2+ sites under various conditions. It also provides a fundamental method for analysis of binding specificity to transport sites under equilibrium conditions that lead to tightly coupled catalytic activation.  相似文献   

11.
The migration of intestinal epithelial cells from the crypts to the tips of villi is associated with progressive cell differentiation. The changes in Ca2+-ATPase activity and ATP-dependent Ca2+-transport rates in basolateral membranes from rat duodenum were measured during migration along the crypt-villus axis. In addition, vitamin D-dependent calcium-binding protein and calmodulin content were measured in homogenates of six cell populations which were sequentially derived from villus tip to crypt base. Alkaline phosphatase activity was highest at the tip of the villus (fraction I) and decreased more than 20-fold towards the crypt base (fraction VI). (Na+ + K+)-ATPase activity also decreased along the villus-crypt axis but in a less pronounced manner than alkaline phosphatase. ATP-dependent Ca2+-transport in fraction II (8.2 ± 0.3 nmol Ca2+/min per mg protein) and decreased slightly towards the villus tip and base (fraction V). The youngest cells in the crypt had the lowest Ca2+-transport activity (0.9 ± 0.1 nmol Ca2+/min per mg protein). The distribution of high-affinity Ca2+-ATPase activity in basolateral membranes correlated with the distribution of ATP-dependent Ca2+-transport. The activity of Na+/Ca2+ exchange was equal in villus and crypt basolateral membranes. Compared to the ATP-dependent Ca2+-transport system, the Na+/Ca2+ exchanger is of minor importance in villus cells but may play a more significant role in crypt cells. Calcium-binding protein decreased from mid-villus towards the villus base and was undetectable in crypt cells. Calmodulin levels were equal along the villus-crypt axis. It is concluded that vitamin D-dependent calcium absorption takes primarily place in villus cells of rat duodenum.  相似文献   

12.
Nitric oxide (NO) plays an important role as an intra- and intercellular signaling molecule in mammalian tissues. In the submandibular gland, NO has been suggested to be involved in the regulation of secretion and in blood flow. NO is produced by activation of NO synthase (NOS). Here, we have investigated the regulation of NOS activity in the rabbit submandibular gland. NOS activity was detected in both the cytosolic and membrane fractions. Characteristics of NOS in the cytosolic and partially purified membrane fractions, such as Km values for l-arginine and EC50 values for calmodulin and Ca2+, were similar. A protein band that cross-reacted with anti-nNOS antibody was detected in both the cytosolic and membrane fractions. The membrane-fraction NOS activity increased 1.82-fold with treatment of Triton X-100, but the cytosolic-fraction NOS activity did not. The NOS activity was inhibited by phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP2). The inhibitory effects of phospholipids on the NOS activity were relieved by an increase in Ca2+ concentrations. These results suggest that the Ca2+- and calmodulin-regulating enzyme nNOS occurs in cytosolic and membrane fractions, and PA and PIP2 regulate the NOS activity in the membrane site by regulating the effect of Ca2+ in the rabbit submandibular gland.Communicated by I.D. Hume  相似文献   

13.
The present study examined the binding of the individual N- and C-lobes of calmodulin (CaM) to Cav1.2 at different Ca2+ concentration ([Ca2+]) from ≈ free to 2 mM, and found that they may bind to Cav1.2 Ca2+-dependently. In particular, using the patch-clamp technique, we confirmed that the N- or C-lobes can rescue the basal activity of Cav1.2 from run-down, demonstrating the functional relevance of the individual lobes. The data imply that at resting [Ca2+], CaM may tether to the channel with its single lobe, leading to multiple CaM molecule binding to increase the grade of Ca2+-dependent regulation of Cav1.2.  相似文献   

14.
Density (age) separated rabbit erythrocytes were examined for differences in the activities of calmodulin and the protein inhibitor of membrane (Ca2+ + Mg2+)-ATPase (Lee, K.S. and Au, K.S. (1983) Biochim. Biophys. Acta 742, 54–62) as well as response of the ATPase towards these protein modulators. It was found that activities of the cytosol protein-bound and free inhibitor as well as membrane-bound inhibitor were higher in top (young) cells as compared to bottom (old) cells. Though the activity of the divalent cation associated membrane calmodulin pool was also higher in young cells, calmodulin activity in the erythrosol remained constant in cells from both age groups. The pool of membrane-associated inhibitor was shown to have greater influence on the ATPase than the membrane-associated calmodulin pool. The influence was more pronounced with inhibitor derived from old than from young cell membranes. Response of the young cell ATPase towards the protein inhibitor was better than the old cell enzyme at low inhibitor concentration. At higher inhibitor concentration, however, response of the ATPase from both cell types was similar.  相似文献   

15.
Activation and inhibition of Ca2+-ATPase of calmodulin-depleted human erythrocyte membranes by oleic acid and a variety of other fatty acids have been measured. Low concentrations of oleic acid stimulate the enzyme activity, both in the presence and in the absence of calmodulin. Concomitantly, the affinity of the membrane bound enzyme to calmodulin progressively decreases due to competitive interactions of calmodulin and oleic acid with the enzyme. Removal of oleic acid from the membrane by serum albumin extinguishes the activating effect of oleic acid and restores the ability of the enzyme to bind calmodulin with high affinity. High concentrations of oleic acid induce an almost complete and irreversible loss of enzyme activity which cannot be abolished by removal of oleic acid. Despite a complete loss of enzyme activity, binding of calmodulin to membranes is approximately normal after removal of oleic acid. Activities of (Na+ + K+)-ATPase, Mg2+-ATPase and acetylcholine esterase, as well as the total protein content, show no gross changes upon treatment of membranes with increasing amounts of oleic acid, which seems to exclude that membrane solubilisation by oleic acid causes an inactivation of the enzyme.  相似文献   

16.
1. 1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate.
2. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate.
3. 3. Among the ligands tested, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate.
4. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K for vanadate was 1.5 μM and inhibition was nearly complete at saturating vanadate concentrations.
5. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate.
Keywords: Ca2+-ATPase; Red cell membrane; Vanadate; Calmodulin  相似文献   

17.
酵母表面展示系统研究进展   总被引:14,自引:2,他引:14  
酵母表面展示系统是继噬菌体展示技术创立后发展起来的真核展示系统,酵母的蛋白质折叠和分泌机制与哺乳动物细胞非常相似,对人的蛋白质表达和展示更具优越性.酵母细胞颗粒大,可用流式细胞仪进行筛选和分离.目前报道的两种酵母展示系统分别以α或a凝集素作为融合骨架.在蛋白质的定向进化、口服疫苗的研制等多方面均有报道.  相似文献   

18.
Summary A voltage-dependent and Ca2+-activated cation channel found in the vacuolar membrane of the yeast,Saccharomyces cerevisiae, was incorporated into planar lipid bilayer and its gating characteristics were studied at the macroscopic and single-channel levels. The open-channel probability at steady state, which was estimated by the macroscopic current measurement, gave a maximum value at –10 mV and decreased in a graded fashion as the voltage became more positive or more negative. The steady-state voltage dependence was explained by assuming two independent gates, which had different rate constants and opposite voltage dependence. The fast-responding gate opened when the voltage of thecis side (the side to which the vesicles were added) was made more negative and the slow-responding gate behaved in the opposite direction. Relatively high concentrations of Ca2+, about 1mm, were required on thecis side for opening the slow gate in a voltage-dependent manner. DIDS increased the open-channel probability of the fast gate when added to thecis side, but was ineffective on the slow gate.  相似文献   

19.
Complementary DNA sequences were isolated from a library of cloned Arabidopsis leaf mRNA sequences in gt10 that encoded a 21.7 kDa polypeptide (CaBP-22), which shared 66% amino acid sequence identity with Arabidopsis calmodulin. The putative Ca2+-binding domains of CaBP-22 and calmodulin, however, were more conserved and shared 79% sequence identity. Ca2+ binding by CaBP-22, which was inferred from its amino acid sequence similarity with calmodulin, was demonstrated indirectly by Ca2+-induced mobility shifting of in vitro translated CaBP-22 during SDS-polyacrylamide gel electrophoresis. CaBP-22 is encoded by a ca. 0.9 kb mRNA that was detected by northern blotting of leaf poly(A)+ RNA; this mRNA was slightly larger than the 809 bp CaBP-22 cDNA insert, indicating that the deduced amino acid sequence of CaBP-22 is near full-length. CaBP-22 mRNA was detected in RNA fractions isolated from leaves of both soil-grown and hydroponically grown Arabidopsis, but below the limits of detection in RNA isolated from roots, and developing siliques. Thus, CaBP-22 represents a new member of the EF-hand family of Ca2+-binding proteins with no known animal homologue and may participate in transducing Ca2+ signals to a specific subset of response elements.  相似文献   

20.
Heart failure is common among the elderly and an alteration in myocardial Ca2+ transport is believed to be involved in its depressed contractile performance. Although ATP-dependent sarcoplasmic reticular (SR) Ca2+ transport has been reported to decrease in old hearts, virtually nothing appears to be known about the Ca2+ pump activity of SR in aging myocardium in the presence of calmodulin, one of its endogenous activators. In this study, the activity of the Ca2+ pump of aging cardiac SR was assessed in the presence of this endogenous stimulator. This assessment was therefore designed to give additional information about the status of this enzyme in old hearts. Male Sprague-Dawley rats were used and were divided into 3 groups: young (4–6 months old); middle-aged (15–17 months old) and old age (24–25 months old). Purified SR membranes were isolated from ventricular tissues. ATP-dependent Ca2+ accumulation by membrane vesicles of middle-aged and old hearts was significantly depressed in comparison to young hearts at all Ca2+ concentrations employed in the absence and presence of calmodulin. The activity of this Ca2+ transporter was similar in middle-aged and old hearts even in the presence of calmodulin. These results suggest that the activity of the Ca2+ pump in SR of aging hearts is depressed even in the presence of calmodulin.C. E. Heyliger is a Scholar of the British Columbia Heart Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号