首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previous studies have led to contrasting results about the role of overwintering leaves as storage sites, which is related to leaf longevity and life-form. The aim of this study was to evaluate the functional role of the leaves of four species of Mediterranean sub-shrubs, with different leaf phenology, as sources of nitrogen (N) and non-structural carbohydrates (NSC) for shoot growth. The seasonal dynamics of the concentrations and pools of N and NSC were assessed monthly in the leaves and woody organs of each species. Overwintering and spring leaves served as N and NSC sources for shoot growth in the evergreen species analyzed, providing up to 73 % and 324 % of the N demand for spring and autumn growth, respectively. Excess autumn N was stored in woody structures which contributed to the N and NSC requirements of spring growth. In the winter deciduous species, woody organs were the main N source for spring growth, while current photosynthesis from immature brachyblasts seemed to be the main carbon (C) source. Due to their short lifespan, overwintering and spring leaves did not show several translocation processes throughout their life time, their contribution to new growth being made during senescence. The successive exchange of leaf cohorts displayed by Mediterranean sub-shrubs might serve as a mechanism to recycle N and C between consecutive cohorts as plants perform the pheno-morphological changes needed to adapt their morphology to the seasonality of their environment.  相似文献   

2.
S. J. Colombo  Y. Teng 《Oecologia》1992,92(3):410-415
Seasonal variation in water relations of 3-yearold white spruce (Picea glauca (Moench) Voss) shoots, monitored with pressure-volume curves over 28 months, was closely related to shoot phenology and was sensitive to environmental fluctuations during both summer growth and winter dormancy. Turgor maintenance capacity was lowest during rapid shoot elongation from late May to early July; this was indicated by the lowest total turgor pressures, the highest (least negative) osmotic potentials at full turgor and the turgor loss point, the smallest differences between osmotic potentials at full turgor and the turgor loss point, the highest relative water contents at turgor loss and a linear decline in cell elasticity with decreasing turgor pressure. This suggests that the high susceptibility of white spruce seedlings to growth check after transplanting is largely attributable to the poor turgor maintenance capacity of this species in early summer.  相似文献   

3.
Shifts in flowering phenology of plants are indicators of climate change. The great majority of existing phenological studies refer solely to gradual warming. However, knowledge on how flowering phenology responds to changes in seasonal variation of warming and precipitation regimes is missing. We report the onset of 22 early (flowering before/within May) and 23 late flowering (flowering after May) species in response to manipulated seasonal warming (equal to + 1.2°C; last 100-year summer/winter warming), additional winter rainfall, and modified precipitation variability (including a 1000-year extreme drought event followed by heavy rainfall) over the growing season in two consecutive years for a species-rich temperate grassland ecosystem. The average onset of flowering (over 2 years) was significantly advanced 3.1 days by winter warming and 1.5 days by summer warming compared to control. Early flowering species responded to seasonal warming in both years, while late-flowering species responded in only 1 year to summer warming. The average onset of early flowering species was significantly advanced, 4.9 days by winter warming and 2.3 days by summer warming. Species-specific analysis showed that even within the early flowering community there were divergences. A positive correlation between plant height and shift in flowering onset was detected under winter warming (R2 = 0.20, p = 0.005). The average onsets of early and late flowering community were affected by neither winter rain nor growing season precipitation variability. Seasonal differences in warming, and particularly winter warming, might alter community dynamics among early and late flowering species which can cause shifts in the seasonal performances of temperate ecosystems.  相似文献   

4.
The seasonal variability of the intracellular free amino acid (FAA) concentration was studied in 5 Macoma balthica populations and 7 Mytilus spp. populations along their European distribution. Because of the well known physiological role of FAA as organic osmolytes for salinity induced cell volume regulation in marine osmoconformers, FAA variations were compared in bivalve populations that were exposed to high vs. low intraannual salinity fluctuations. In general, seasonal FAA variations were more pronounced in M. balthica than in Mytilus spp. In both bivalve taxa from different locations in the Baltic Sea, highest FAA concentrations were found in autumn and winter and low FAA concentrations were measured in summer. Seasonal patterns were less pronounced in both taxa at locations with constant salinity conditions. In contrast to Baltic Sea populations, Atlantic and Mediterranean bivalves showed high FAA concentrations in summer and low values in winter, regardless of seasonal salinity fluctuations. Significant seasonal FAA variations at locations with constant salinity conditions showed that salinity appeared not to be the main factor in determining FAA concentrations. The seasonal patterns of the main FAA pool components, i.e. alanine, glycine and taurine, are discussed in the context of seasonal variations in environmental factors (salinity, temperature) and physiological state (glycogen content, reproductive stage).  相似文献   

5.
掌握树木根部碳存储规律对于准确估算碳在地上器官与地下器官间的分配非常必要。本研究以栓皮栎(Quercus variabilis Blume)为对象,在2016年5月—2017年6月,通过周期性采样方法(共计采样14次),测定了高、低海拔(970和650 m)栓皮栎粗根非结构性碳水化合物(non-structural carbohydrates,NSC)及其组分(可溶性糖和淀粉)含量的年内动态变化。结果表明:除高海拔淀粉外,栓皮栎粗根NSC及其组分含量均随季节变化差异显著(P<0.05)。粗根NSC含量呈现生长季初期(3月)下降,非生长季(2月)达到最高值的变化趋势;栓皮栎粗根NSC组成以淀粉为主,高、低海拔淀粉含量占比分别为61%和71%,这可能与栓皮栎适应区域环境特征有关。不同海拔间,栓皮栎粗根NSC及其组分含量的差异出现在生长季初期(3月,P<0.05)。高海拔(10.26%)栓皮栎粗根NSC含量小于低海拔(13.96%)。栓皮栎粗根NSC含量存在明显的季节波动,粗根在生长季末及非生长季积累的NSC对下一年树木生长启动非常重要,研究结果有助于理解树木地下器官对树木生长的碳供应机制。  相似文献   

6.
We analysed concentrations of starch, sucrose, glucose and fructose in upper branch wood, foliage and trunk sapwood of Douglas-fir trees in height classes ranging from ~2 to ~57 m. Mean concentrations of non-structural carbohydrates (NSC) for all tissues were highest in the tallest height class and lowest in the lowest height class, and height-related trends in NSC were most pronounced in branches. Throughout a 17-month sampling period, mean values of branch NSC from the 57 m trees ranged between 30 and 377% greater than the 2 m trees. Branch NSC was inversely correlated with midday shoot water potential (Ψ(l)), shoot osmotic potential at full turgor (Ψ) and shoot extension. Temporal fluctuation in branch NSC was inversely correlated with height, and positively correlated with midday Ψ(l) , Ψ and shoot extension. The positive correlation between height and storage of NSC, and the negative correlation between NSC storage and shoot extension provide evidence that size-related growth decline in trees is not strongly associated with constraints on photosynthesis. The negative correlation between height and fluctuation in NSC suggests that mobilization of photosynthate in taller trees is constrained by some factor such as reductions in turgor-driven cell expansion or constraints on phloem transport.  相似文献   

7.
Nonstructural carbohydrate (NSC) concentration in plant organs is an indicator of a balance between carbon sources (i.e., photosynthesis) and sinks (i.e., growth). Understanding how NSC concentrations change with altitude would help determine altitudinal changes in plant growth. This study compared shoot growth and seasonal changes in NSC concentrations of current-year and 1-year-old needles and branch woods between the upper and lower distribution limits of subalpine conifers Abies veitchii (1600–2000 m a.s.l.), A. mariesii (2000–2400 m a.s.l.), and Pinus pumila (2400–2800 m a.s.l.) in Japan. The lengths of 1-year-old shoots were shorter at the upper distribution limits for the three species, and concentrations and branch woods were all high in spring but decreased toward summer, increasing from summer to autumn. No clear difference was found for either parameter between upper and lower distribution limits for each species. Therefore, this study suggests that growth reduction at the upper distribution limits is due to reduction of both sink and source activities, with similar degrees for each species. However, further studies of sink and source activities, such as temperature-dependent photosynthesis and growth traits, are necessary to reveal clearly the cause of this growth reduction in high altitudes.  相似文献   

8.
Zhu WZ  Cao M  Wang SG  Xiao WF  Li MH 《PloS one》2012,7(3):e34213
Many studies have tried to explain the physiological mechanisms of the alpine treeline phenomenon, but the debate on the alpine treeline formation remains controversial due to opposite results from different studies. The present study explored the carbon-physiology of an alpine shrub species (Quercus aquifolioides) grown at its upper elevational limit compared to lower elevations, to test whether the elevational limit of alpine shrubs (<3 m in height) are determined by carbon limitation or growth limitation. We studied the seasonal variations in non-structural carbohydrate (NSC) and its pool size in Q. aquifolioides grown at 3000 m, 3500 m, and at its elevational limit of 3950 m above sea level (a.s.l.) on Zheduo Mt., SW China. The tissue NSC concentrations along the elevational gradient varied significantly with season, reflecting the season-dependent carbon balance. The NSC levels in tissues were lowest at the beginning of the growing season, indicating that plants used the winter reserve storage for re-growth in the early spring. During the growing season, plants grown at the elevational limit did not show lower NSC concentrations compared to plants at lower elevations, but during the winter season, storage tissues, especially roots, had significantly lower NSC concentrations in plants at the elevational limit compared to lower elevations. The present results suggest the significance of winter reserve in storage tissues, which may determine the winter survival and early-spring re-growth of Q. aquifolioides shrubs at high elevation, leading to the formation of the uppermost distribution limit. This result is consistent with a recent hypothesis for the alpine treeline formation.  相似文献   

9.
Chicory (Cichorium intybus), a deep rooted weed, grows in regions with temperate climates. Seasonal partitioning of compounds between the root and shoot results in fluctuations in the soluble carbohydrate, nitrate, amino acid, and protein pools within the roots. The activities of nitrate reductase (NR) (EC 1.6.6.1), glutamine synthetase (EC 6.3.1.2), NADH (EC 1.4.1.14), ferrodoxin glutamate synthase (EC 1.4.7.1), and glutamate dehydrogenase (GDH) (EC 1.4.1.2-4) vary throughout the year and coincide with seasonal alterations in nitrate, fructose, and sucrose. During the winter, NR, glutamine synthetase and ferrodoxin glutamate synthase activities increase in the root, while GDH displays the opposite trend with elevated activity in the summer months. All of these enzymes exhibit seasonal alterations in abundance as detected by Western blot analysis, increasing during the winter and, therefore, contributing to the seasonally dynamic protein pool. Extensive fluctuations in abundance and activity of these enzymes in the root occur during the spring and fall and coincide with shoot growth and senescence, respectively. Several observations indicate that posttranslational modifications of NR and GDH are taking place throughout the year; for example, NR is particularly unstable during the spring and fall, and seasonal GDH activity does not correlate with protein abundance.  相似文献   

10.
We analyzed geographic patterns of richness in both the breeding and winter season in relation to a remotely sensed index of seasonal production (normalized difference vegetation index [NDVI]) and to measures of habitat heterogeneity at four different spatial resolutions. The relationship between avian richness and NDVI was consistent between seasons, suggesting that the way in which available energy is converted to bird species is similar at these ecologically distinct times of year. The number and proportion of migrant species in breeding communities also increased predictably with the degree of seasonality. The NDVI was a much better predictor of seasonal richness at finer spatial scales, whereas habitat heterogeneity best predicted richness at coarser spatial resolutions. While we find strong support for a positive relationship between available energy and species richness, seasonal NDVI explained at most 61% of the variation in richness. Seasonal NDVI and habitat heterogeneity together explain up to 69% of the variation in richness.  相似文献   

11.
Seasonal abundance of phytoplankton has been discussed in three tropical ponds of Hyderabad, India during two years of investigation. The observed patterns have been characterized as seasonal maxima and minima during summer, monsoon and winter. The tropical patterns observed in the study ponds were typical but different from those observed in temperate regions. Most of the maxima were observed in winter and the minima during the monsoon or rainy season. Diatomeae dominated the phytoplankton of all the ponds in all seasons. An inverse relationship between Diatomeae and Cyanophyta, and Diatomeae and Euglenineae was observed. The phytoplankters have been grouped as perennial, summer, monsoon and winter species.  相似文献   

12.
Nine leaf traits (area, fresh weight, dry weight, volume, density, thickness, specific leaf area (SLA), dry matter content (LDMC), leaf nitrogen content (LNC)) from ten plant species at eight sites in southern mediterranean France were investigated in order to assess their variability along a climatic gradient and their ranking congruency power. After examination of trait correlation patterns, we reduced the nine initial leaf traits to four traits, representative of three correlation groups: allometric traits (dry weight), functional traits (SLA and dry matter percentage) and Leaf Thickness. We analysed the variability of these four leaf traits at species and site level. We observed that between species variation (between 64.5 for SLA and 91% for LDMC) is higher than within species variation. Allowing a good congruency of species ranking assessed by spearman rank correlation () and a good reallocation of individuals to species by discriminant analysis. A site level variability (between 0.7% for Dry weight and 6.9% for SLA) was identified and environmental parameters (altitude, temperature, precipitation, nitrogen, pH) were considered as probable control factors. We found significant correlation between SLA, LDMC and the average minimum temperature (respectively r=0.87 and r=-0,9) and no correlation for the other traits or environmental parameters. Furthermore, we conclude that two leaf traits appear to be central in describing species: specific leaf area (SLA), percentage of dry matter (LDMC. While, SLA and LDMC are strongly correlated, LDMC appears to be less variable than SLA. According to our results the Dry Matter Content (or its reversal Leaf Water Content) appears the best leaf trait to be quantified for plant functional screening. Leaf thickness appeared to be rather uncorrelated with other leaf traits and show no environmental contingency; its variability could not have been explained in this study. Further studies should focus on this trait. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
不同物种间的功能性状差异是自然生态系统中物种共存的基础, 而物种内个体间的性状变异对物种的共存和分布同样具有重要作用。本文以湖北星斗山自然保护区亚热带常绿落叶阔叶混交林内28种主要树种(通过物种多度排序获得, 其中常绿和落叶树种各14种)为研究对象, 探讨不同叶习性树种的4种功能性状(比叶面积、叶干物质含量、叶面积和比茎密度)在种间和种内的差异程度。结果表明: (1)常绿和落叶树种在4种功能性状上均存在显著差异, 常绿树种的比叶面积和叶面积显著低于落叶树种, 但叶干物质含量和比茎密度则显著高于落叶树种; (2)比叶面积的变化主要来源于叶习性(57.49%), 叶面积变化主要来源于种间(66.80%)和种内变异(27.52%), 叶干物质含量的变化主要来源于种间(38.12%)和种内(33.88%)变异, 但比茎密度的变化主要来源于种内变异(51.50%), 其次为种间变异(32.52%); (3)常绿和落叶树种种间水平的性状相关性可能掩盖各功能性状之间的相关性。种内变异能够显著影响群落间的植物功能性状差异, 但不同功能性状的种内变异程度存在差异。  相似文献   

14.
Whole‐plant approaches allow quantification of the temporal overlap between primary and secondary growth. If the amount of time available to grow is short, there may be a high temporal overlap between shoot growth and wood formation. We hypothesise that such overlap depends on the duration of the growing season and relates to wood anatomy. We evaluated wood anatomy, shoot longitudinal and radial growth rates, fine root production and the concentrations of non‐structural carbohydrates (NSC) in the wood of six sub‐shrub species growing in sites with contrasting climatic conditions (Lepidium subulatum, Linum suffruticosum, Salvia lavandulifolia, Satureja montana, Ononis fruticosa, Echinospartum horridum). Sub‐shrub species living in sites with a short growing season displayed a high overlap between aboveground primary and secondary growth and formed wide vessels, whereas species from the warmest and driest sites presented the reverse characteristics. The highest overlap was linked to a rapid shoot extension and thickening through the enhanced hydraulic conductivity provided by wide vessels. The reductions in NSC concentrations when growth peaked were low or moderate, indicating that sub‐shrubs accumulate NSC in excess, as do trees. The temporal overlap among primary and secondary growth in woody plants may be connected to the duration and rates of shoot and wood growth, which in turn depend on the vessel lumen area.  相似文献   

15.
Summary Seasonal growth dynamics of the root and shoot systems of dominant shrubs of the Chilean matorral were studied. In some species root and shoot activity were synchronous, while in others production of fine roots was observed prior to bud burst and shoot elongation. Biomass production of new roots was significantly higher in spring than in autumn. Maximum biomass of dead roots was concomitant with the maximum amounts of litter under the canopy.  相似文献   

16.
Blood samples from five species of marine teleosts were assayed for methemoglobin (metHb) levels during winter and summer acclimatization. There was at least 7% total hemoglobin in the met-form in all species, and as high as 27% in one species, the Atlantic cod (Gadus morhua). There was significant seasonal variation in metHb levels for three of the five species, the highest values occurring during the winter months; cunners (Tautogolabrus adspersus) 15.6% in winter and 10.1% in the summer, shorthorn sculpin (Myoxocephalus scorpius) 20.0% in the winter and 8.19% in the summer, longhorn sculpin (Myoxocephalus octodecemspinosus) 17.3-21.6% in the winter and 8.12% in the summer. The winter flounder (Pseudopleuronectes americanus) and the Atlantic cod maintained metHb concentrations constant throughout the year: 13% and 27%, respectively. There does not appear to be any relationship between the activity of a fish and the level of metHb in its blood.  相似文献   

17.
Liver and epaxial muscle RNA concentrations and RNA-DNA ratios (RNA/DNA) of bluegill Lepomis macrochirus from a central Tennessee lake were maximum in the spring, low during the summer, high again in the fall, and low during the winter. Liver-somatic indexes and DNA concentrations indicated that liver cell volume and energy storage varied seasonally and were lowest during late spring and summer. Seasonal variations in gonosomatic indexes were typical of this species, and RNA/DNA decreased as gonads matured during the spring. RNA/DNA and energy storage in the liver decreased during the major spawning season. Seasonal variations in food consumption may have effected seasonal growth and energy storage. However, a summer depression in RNA/DNA may have been more closely associated with the effects of thermal stratification and dissolved oxygen stress.  相似文献   

18.
枝条是碳供应器官和碳需求器官的连接者, 研究其非结构性碳水化合物(NSC)含量的季节变化对理解树木体内的碳分配至关重要。该研究以秦岭东段栓皮栎(Quercus variabilis)优势群落为研究对象, 于2016年5月至2017年5月, 在其分布的海拔上下限(650 m和970 m), 通过在展叶期采用旬尺度和在非展叶期采用月尺度相结合的周期性取样方法(共计12次), 测定栓皮栎枝条NSC组分及含量, 并观测同期叶片物候变化。结果表明: (1)栓皮栎枝条NSC含量随季节波动较小, 变化差异不显著。但枝条可溶性糖含量(高海拔)或淀粉含量(低海拔)在一定生境条件下, 均存在明显的季节波动, 说明栓皮栎枝条可溶性糖和淀粉之间存在动态转化过程。(2)栓皮栎枝条NSC组成以可溶性糖为主(61%), 这可能是该树种在暖温带季风气候区所采取的生长策略。(3)土壤含水量(正相关)和饱和水汽压差(负相关)分别是在高海拔和低海拔影响栓皮栎枝条NSC含量的主导环境因子, 说明相比高海拔, 低海拔的栓皮栎可能对高温引起的水分胁迫更敏感。(4)结合叶片物候发现, 栓皮栎枝条NSC含量最大值出现在萌芽前(3月中下旬, 11%左右), 最小值出现在展叶后期(4月末, 5%左右), 叶片萌芽展叶后枝条NSC含量下降。总体而言, 枝条NSC含量在高低海拔不存在显著差异, 但春季萌芽前后存在显著差异, 海拔引起的叶片物候时间差极可能是造成这一现象的主要原因。研究结果说明, 栓皮栎叶片物候会直接影响枝条NSC含量的季节变化, 枝条NSC含量对叶片萌芽生长至关重要, 研究结果有助于加深对栓皮栎树体内碳调配机制的理解。  相似文献   

19.
1. We investigated the seasonal variation of biological traits and the influence of interannual rainfall variability on this pattern. Using long‐term survey data (6–19 years) from an intermittent and a perennial stream in the Mediterranean‐climate region of northern California, we examined 16 fuzzy‐coded biological traits (e.g. maximum size, life cycle duration, and mode of respiration). 2. Seasonal habitat variability is higher in the intermittent stream than in the perennial stream. During the winter and spring wet‐season both streams flood; however, during the summer dry‐season, the intermittent stream forms isolated pools in (occasionally drying completely). 3. Seasonal habitat variability influenced both taxonomic and biological trait composition. Distinct taxonomic communities were present in each season, particularly in the intermittent stream. The intermittent stream also exhibited more seasonal variation in biological traits than the perennial stream. 4. Despite statistically significant seasonal variation, trait composition was relatively stable among seasons in comparison with taxonomic composition and abundance. Taxonomic composition varied considerably between seasons, because of high seasonal and interannual replacement of taxa resulting from seasonal habitat changes. 5. The seasonality of taxonomic composition and abundance was sensitive to interannual rainfall variability. In dry years, the taxonomic composition of communities was more similar between seasons than in wet years, while trait composition was relatively insensitive to rainfall variability. 6. Despite high seasonal variation in abundance and taxonomic composition, biological traits of aquatic macroinvertebrates varied less and exhibited seasonal stability, which may be a result of the unpredictability and harshness of stream environments.  相似文献   

20.
  • 1 The interannual variability of the dominant phytoplankton populations is described in a subtropical reservoir in Queensland using weekly data for a 16-year period between 1978 and 1994. North Pine Dam, Brisbane, is in an area characterized by strong interannual variability in rainfall. This variability is linked to El Nino Southern Oscillation (ENSO) events. Between 1978 and 1994 periods of drought (during strong ENSO events) were interspersed by periods of flooding rains. Rainfall on the catchment and temperature and oxygen within the dam showed strong 40-day periodicities which also varied in strength interannually in response to ENSO events. Similar patterns of fluctuations in the 40-day periodicity have been found elsewhere in SE Australia. Seasonal cycles of stratification in the dam were a function of both hydrographic and hydrological events. Intermittent rain storms caused partial turnovers and large outflows. As much as 90% of the dam volume was exchanged in a single flood event.
  • 2 The dominant phytoplankton species were similar to those frequently found in tropical and subtropical lakes and reservoirs. The phytoplankton community switched between cyanobacterial blooms (Cylindrospermopsis, Microcystis) during drought and falling water levels and diatom blooms (Aulacoseira) in response to inflows and seasonal turnovers. There appeared to be a subtle interaction between inflows, water column stability, the periodic overturns and the occurrence of the dominant species. All the dominant species showed long periods (2–4 years) of exponential increase or decrease superimposed on top of the seasonal fluctuations in abundance. These patterns of abundance led to marked interannual variability in the phytoplankton biomass. Climate variability had a major impact on the seasonal and interannual changes of the dominant phytoplankton species.
  • 3 Phytoplankton biomass tended to be depressed for about 3 months after individual storm events but the data also displayed long-term lag effects (2–4 years) which destroyed any significant correlation between water residence time and biomass. Summer maxima of biomass dominated by cyanobacteria disappeared between 1985 and 1990 and were replaced by smaller winter peaks. The data presented here are not capable of unequivocally identifying the precise reason for these longer-term effects. Because of the implications for water quality management in subtropical and tropical reservoirs they warrant further study.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号