首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以7个马尾松(Pinus massoniana)一代种子园自由授粉家系为材料, 设置同质低磷(P)胁迫和异质低P胁迫模拟的盆栽试验, 系统研究马尾松家系对不同类型低P胁迫的适应机制和P效率变异规律。结果表明, 参试马尾松家系的苗高、地径和生物量等P效率指标均表现出显著的家系变异, 主要P效率指标的家系遗传力均较高, 干物质积累量的广义遗传力大于0.80, 揭示了马尾松P营养效率的较大遗传改良潜力。马尾松对不同类型低P胁迫的适应机制有所差异。在同质低P胁迫下, ‘3201’、‘1217’等高P效率家系的根系主要参数均高于低P效率家系, 表明整体根系参数的适应性变化是P效率和生物量形成的决定因素。在异质低P胁迫下, 高P效率马尾松家系在表层富P介质的根系分布量、分布比例均显著增加, 表层根系参数与马尾松家系P效率呈显著正相关, 揭示根系空间构型的适应性变化是决定马尾松高P效率的重要生物学基础。表层根系生物量、表层根相对比例的家系遗传力达0.88和0.72, 证实了以马尾松根构型的适应变化为突破口, 选育具有理想根构型和较高P效率的马尾松家系。  相似文献   

2.
A common response to low phosphorus availability is increased relative biomass allocation to roots. The resulting increase in root:shoot ratio presumably enhances phosphorus acquisition, but may also reduce growth rates by diverting carbon to the production of heterotrophic rather than photosynthetic tissues. To assess the importance of increased carbon allocation to roots for the adaptation of plants to low P availability, carbon budgets were constructed for four common bean genotypes with contrasting adaptation to low phosphorus availability in the field ("phosphorus efficiency"). Solid-phase-buffered silica sand provided low (1 microM), medium (10 microM), and high (30 microM) phosphorus availability. Compared to the high phosphorus treatment, plant growth was reduced by 20% by medium phosphorus availability and by more than 90% by low phosphorus availability. Low phosphorus plants utilized a significantly larger fraction of their daytime net carbon assimilation on root respiration (c. 40%) compared to medium and high phosphorus plants (c. 20%). No significant difference was found among genotypes in this respect. Genotypes also had similar rates of P absorption per unit root weight and plant growth per unit of P absorbed. However, P-efficient genotypes allocated a larger fraction of their biomass to root growth, especially under low P conditions. Efficient genotypes had lower rates of root respiration than inefficient genotypes, which enabled them to maintain greater root biomass allocation than inefficient genotypes without increasing overall root carbon costs.  相似文献   

3.
苦荞耐低磷基因型筛选及评价指标的鉴定   总被引:1,自引:0,他引:1  
土壤缺磷是限制我国黄土高原作物高产的主要因子之一,苦荞是黄土高原区优势杂粮作物且不同基因型苦荞对低磷胁迫的响应存在显著差异,因而筛选磷高效利用苦荞基因型成为提高苦荞产量、促进当地农业可持续发展的重要途径.以14份不同基因型苦荞为材料,采用砂培试验,对正常供磷(2 mmol·L-1)和低磷胁迫(0.2 mmol·L-1)下苦荞苗期的农艺性状、生理生化指标以及植株磷利用情况进行测定,通过计算苦荞苗期耐低磷特性,筛选出耐低磷苦荞品种及其评价指标,为苦荞磷高效育种及黄土高原瘠薄土壤栽培提供理论依据.结果表明:低磷胁迫下,各基因型苦荞苗期地上部受影响程度大于根系,地上部形态指标、根系平均直径、根系表面积和根系体积降低,而主根长伸长;苦荞根系活力、可溶性蛋白含量均下降,其他生理生化指标升高;植株全磷含量与磷积累量均降低,但磷利用效率升高.主成分分析将22个单项指标转化成4个相互独立的综合指标(累计贡献率达90.1%),聚类分析将14种苦荞划分成3类:耐低磷型、中间型和磷敏感型.为探讨苦荞苗期耐低磷鉴定指标,以耐低磷性综合评价值(D值)为因变量,各单项指标耐低磷系数为自变量,建立最优回归方程,进行耐低磷预测.最终筛选出根表面积、根长、株高、地上部干质量、酸性磷酸酶、磷积累量、过氧化物酶活性7项指标,可用于苦荞苗期耐低磷能力的快速鉴定.  相似文献   

4.
Low phosphorus availability stimulates root hair elongation in many plants, which may have adaptive significance in soil phosphorus acquisition. We investigated the effect of low phosphorus on the elongation of Arabidopsis thaliana root hairs. Arabidopsis thaliana plants were grown in plant culture containing high (1000 mmol m?3) or low (1 mmol m?3) phosphorus concentrations, and root hair elongation was analysed by image analysis. After 15d of growth, low-phosphorus plants developed root hairs averaging 0.9 mm in length while high-phosphorus plants of the same age developed root hairs averaging 0.3 mm in length. Increased root hair length in low-phosphorus plants was a result of both increased growth duration and increased growth rate. Root hair length decreased logarithmically in response to increasing phosphorus concentration. Local changes in phosphorus availability influenced root hair growth regardless of the phosphorus status of the plant. Low phosphorus stimulated root hair elongation in the hairless axr2 mutant, exogenously applied IAA stimulated root hair elongation in wild-type high-phosphorus plants and the auxin antagonist CM PA inhibited root hair elongation in low-phosphorus plants. These results indicate that auxin may be involved in the low-phosphorus response in root hairs.  相似文献   

5.
Plant growth and phosphorus (P) uptake of two selections of rye (Secale cereale L.) differing in length of root hairs, in response to mycorrhizal infection were investigated. Rye plants with short root hairs (SRH) had a greater length of root infected by Glomus intraradices (up to 32 m pot–1) than those with long root hairs (LRH) (up to 10 m pot–1). Application of P decreased the percentage of root length infected in both selections. In low-P soil, mycorrhizal infection increased shoot and root P concentration, especially in LRH plants. Generally, LRH had higher shoot dry weight than SRH plants. P uptake was increased both by LRH and by mycorrhizal infection. Differences in specific P uptake and P utilization efficiency between SRH and LRH plants were observed in non-mycorrhizal plants. With low P supply, P utilization efficiency (dry matter yield per unit of P taken up) of LRH plants increased with time. However, mycorrhizal infection reduced P utilization efficiency, particularly of SRH plants. SRH plants, which were agronomically less efficient (i.e. low dry matter yield at low P supply) were more responsive to either mycorrhizal infection or P addition than the LRH plants. No interaction was observed between mycorrhizal infection and root hair length.  相似文献   

6.
不同磷效率小麦品种的磷吸收特性   总被引:12,自引:2,他引:12  
在丰磷、缺磷条件下,对不同磷效率小麦品种的磷吸收特性进行研究。缺磷条件下,不同磷效率品种成熟期的植株全磷量和生育中后期(挑旗-成熟期)植株磷累积量均以磷高效品种最高,中效品种次之,低效品种最低。不同磷效率品种拔节期、挑旗期和成熟期的磷利用效率差异较小。表明磷高效小麦品种在缺磷条件下子粒产量形成能力的提高。与生育中后期植株具有相对较强的磷素吸收能力有关。缺磷条件下,不同磷效率品种在生育中后期的根系TTC还原力和可溶蛋白含量也以高效品种最高,中效次之,低效最低。表明磷高效小麦品种植株生育中后期根系具有较强的生理功能,是其在缺磷务件下吸磷量增加、产量相对明显提高的重要生理基础。研究表明,不同磷效率小麦品种在磷胁迫条件下的根系酸性磷酸化酶(APase)活性存在显著差异,并在小麦磷吸收效率的调控中具有重要作用。  相似文献   

7.
Exploitation of localized phosphorus-patches by common bean roots   总被引:3,自引:1,他引:2  
S. Snapp  R. Koide  J. Lynch 《Plant and Soil》1995,177(2):211-218
Phosphorus (P) uptake from patches was investigated in high-P and low-P common bean (Phaseolus vulgaris L.) plants using a split-root system. A P-patch was developed by exposing a small sub-section of the root system to localized P enrichment. A soil-based media was used to provide realistically low, buffered levels of P. In addition, nutrient solution provided zero and 1 mM P to low-P and high-P plants, respectively. Overall, growth of low-P plants was approximately 40% that of high-P plants. Mycorrhizal infection by G. etunicatum had little detectable influence on plant growth. Root length exploring a P-patch was comparable for low-P and high-P plants, yet low-P plants allocated half as much root biomass and P to a P-patch compared to high-P plants. This was achieved by an increase in the investment in fine, terminal roots exploring a P-patch in low-P plants. P uptake per investment of dry weight in the P-patch was over 50% higher for high-P plants compared to low-P plants. The higher P-uptake efficiency in high-P plants was achieved despite the greater production of fine roots in low-P plants.  相似文献   

8.
Morphological and biochemical interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus (Glomus fasciculatum [Thaxt. sensu Gerdemann] Gerdemann and Trappe) and potato (Solanum tuberosum L.) plants during the development of P deficiency were characterized. Nonmycorrhizal (NM) plants grown for 63 d with low abiotic P supply (0.5 mM) produced 34, 52, and 73% less root, shoot, and tuber dry matter, respectively, than plants grown with high P (2.5 mM). The total leaf area and the leaf area:plant dry weight ratio of low-P plants were substantially lower than those of high-P plants. Moreover, a lower shoot:root dry weight ratio and tuber:plant dry weight ratio in low-P plants than in high-P plants characterized a major effect of P deficiency stress on dry matter partitioning. In addition to a slower rate of growth, low-P plants accumulated nonreducing sugars and nitrate. Furthermore, root respiration and leaf nitrate reductase activity were lower in low-P plants than in high-P plants. Low abiotic P supply also induced physiological changes that contributed to the greater efficiency of P acquisition by low-P plants than by high-P plants. For example, allocation of dry matter and P to root growth was less restricted by P deficiency stress than to shoot and tuber growth. Also, the specific activities of root acid phosphatases and vanadate-sensitive microsomal ATPases were enhanced in P-deficient plants. The establishment of a VAM symbiosis by low-P plants was essential for efficient P acquisition, and a greater root infection level for P-stressed plants indicated increased compatibility to the VAM fungus. By 63 d after planting, low-P VAM plants had recovered 42% more of the available soil P than low-P NM plants. However, the VAM fungus only partially alleviated P deficiency stress and did not completely compensate for inadequate abiotic P supply. Although the specific activities of acid phosphatases and microsomal ATPases were only marginally influenced by VAM infection, VAM roots characteristically had a higher protein concentration and, consequently, enhanced microsomal ATPase and acid phosphatase activities on a fresh weight basis compared with NM roots. Morphological and ultrastructural details of VAM plants are discussed in relation to the influence of the VAM symbiosis on P nutrition of potato.  相似文献   

9.
Brachiaria forage grasses are widely used for livestock production in the tropics. Signalgrass (Brachiaria decumbens cv. Basilisk, CIAT 606) is better adapted to low phosphorus (P) soils than ruzigrass (B. ruziziensis cv. Kennedy, CIAT 654), but the physiological basis of differences in low-P adaptation is unknown. We characterized morphological and physiological responses of signalgrass and ruzigrass to low P supply by growing both grasses for 30 days in nutrient solution with two levels of P supply using the hydroxyapatite pouch system. Ruzigrass produced more biomass at both levels of P supply whilst signalgrass appears to be a slower-growing grass. Both grasses increased biomass allocation to roots and had higher root acid phosphatase and phytase activities at low P supply. At low P supply, ruzigrass showed greater morphological plasticity as its leaf mass density and lateral root fraction increased. For signalgrass, morphological traits that are not responsive to variation in P supply might confer long-term ecological advantages contributing to its superior field persistence: greater shoot tissue mass density (dry matter content) might lower nutrient requirements while maintenance of lateral root growth might be important for nutrient acquisition in patchy soils. Physiological plasticity in nutrient partitioning between root classes was also evident for signalgrass as main roots had higher nutrient concentrations at high P supply. Our results highlight the importance of analyzing morphological and physiological trait profiles and determining the role of phenotypic plasticity to characterize differences in low-P adaptation between Brachiaria genotypes.  相似文献   

10.
Low phosphorus availability is often a primary constraint to plant productivity in native soils. Here we test the hypothesis that root carbon costs are a primary limitation to plant growth in low P soils by assessing the effect of P availability and mycorrhizal infection on whole plant C budgets in common bean ( Phaseolus vulgaris L.). Plants were grown in solid-phase-buffered silica sand providing a constant supply of low (1 μ m ) or moderate (10 μ m ) P. Carbon budgets were determined weekly during the vegetative growth phase. Mycorrhizal infection in low-P plants increased the root specific P absorption rate, but a concurrent increase in root respiration consumed the increased net C gain resulting from greater P uptake. The energy content of mycorrhizal and non-mycorrhizal roots was similar. We propose that the increase in root respiration in mycorrhizal roots was mainly due to increased maintenance and growth respiration of the fungal tissue. Plants grown with low P availability expended a significantly larger fraction of their total daily C budget on below-ground respiration at days 21, 28 and 35 after planting (29–40%) compared with plants grown with moderate P supply (18–25%). Relatively greater below-ground respiration in low P plants was mainly a result of their increased root:shoot ratio, although specific assimilation rate was reduced significantly at days 21 and 28 after planting. Specific root respiration was reduced over time by low P availability, by up to 40%. This reduction in specific root respiration was due to a reduction in ion uptake respiration and growth respiration, whereas maintenance respiration was increased in low-P plants. Our results support the hypothesis that root C costs are a primary limitation to plant growth in low-P soils.  相似文献   

11.
Gaume  Alain  Mächler  Felix  De León  Carlos  Narro  Luis  Frossard  Emmanuel 《Plant and Soil》2001,228(2):253-264
We investigated some mechanisms, which allow maize genotypes to adapt to soils which are low in available P. Dry matter production, root/shoot-ratio, root length and root exudation of organic acids and acid phosphatase were investigated in four maize genotypes grown under P-deficient and P-sufficient conditions in sterile hydroponic culture. A low-P tolerant, an acid-tolerant and a low-P susceptible genotype of maize were compared with a Swiss commercial cultivar. The study found increased root development and increased exudation of acid phosphatase under P-deficient conditions in all maize genotypes, except for the Swiss cultivar. Effects on root formation and acid phosphatase were greater for the low-P tolerant than for the low-P susceptible, and the acid soil tolerant genotypes. Organic acid contents in root tissues were increased under P deficiency and related to increased PEPC activity. However, the increase in contents was associated with an increase in exudation for the low-P tolerant genotype only. The low-P susceptible genotype was characterized by high organic acid content in roots and low organic acid exudation. The organic acids content in the phloem exudates of shoots was related to root exudation under different P supply, to the difference between lines in organic acids root content, but not to the low-P tolerance or susceptibility of maize genotypes.  相似文献   

12.
低磷和干旱胁迫对大豆植株干物质积累及磷效率的影响   总被引:15,自引:0,他引:15  
乔振江  蔡昆争  骆世明 《生态学报》2011,31(19):5578-5587
土壤缺磷和季节性干旱已经成为南方酸性红壤地区大豆生产的主要限制因素之一。选取2个大豆品种巴西10号(磷高效)和本地2号(磷低效),研究其在不同磷素(0,15, 30 mg/kg P)和水分处理(分别在开花期和结荚期进行干旱胁迫)下的反应,从植株生物量、叶绿素含量、磷效率指标等方面研究不同基因型大豆对水磷耦合胁迫的适应机制。研究结果表明,随着土壤磷素水平的增加,两个品种的生物量和叶片叶绿素含量显著增加,根冠比则显著下降。在同一磷素水平处理下,干旱胁迫则导致较高的根冠比,对叶片叶绿素含量影响不大,两个品种表现一致。两个基因型大豆受到干旱胁迫后,其产量均显著低于正常水分处理。中等施磷能显著提高两个大豆品种的产量,但高磷处理对产量的增加幅度有限,甚至高磷处理还造成本地2号减产。巴西10号的产量随土壤中磷素的增加而增加,而本地2号的产量则为中磷>高磷>低磷,不管是磷处理还是水分处理,巴西10号的产量均高于本地2号。无论是花期干旱还是结荚期干旱,巴西10号和本地2号的根磷效率比、磷吸收效率及磷转移效率均随土壤磷浓度的增加而增加,磷利用效率则降低。总体上来讲,巴西10号的磷吸收效率和利用效率高于本地2号,而根磷效率比、磷转移效率则小于本地2号。  相似文献   

13.
不同基因型苦荞幼苗对低磷胁迫的响应   总被引:1,自引:0,他引:1  
采用沙培法,以4个不同耐低磷苦荞(Fagopyrum tataricum(L.) Gaertn)品种为材料,设正常磷处理(P1,2 mmol/L对照)、低磷胁迫(P2,1 mmol/L)和极低磷胁迫(P3,0.2 mmol/L) 3个处理,研究低磷胁迫对苦荞苗期农艺性状、生理生化指标以及植株磷利用的影响。结果显示:(1)低磷胁迫下,苦荞苗期株高、茎粗、叶面积、地上部干重、根系干重、根系平均直径、根系表面积、根系体积等指标均有所下降;主根伸长、根冠比有所升高,但不同品种的升降幅度有所不同。(2)低磷胁迫使苦荞叶绿素含量、可溶性蛋白含量和根系活力均有所下降,根系的SOD活性、POD活性、酸性磷酸酶活性、可溶性糖含量、游离脯氨酸含量显著增加,且表现为耐低磷苦荞品种的增幅大于不耐低磷苦荞。(3)低磷胁迫使苦荞植株全磷含量和单株磷积累量下降,却使磷利用效率升高。研究结果表明耐低磷品种通过主根伸长下扎以及分泌较多的酸性磷酸酶,合理吸收与利用土壤磷素,通过保持叶片较高的叶绿素含量维持较强的光合能力,通过保持较高的抗氧化酶活性降低膜脂过氧化伤害,最大程度的适应低磷环境。  相似文献   

14.
The lengths of roots and root hairs and the extent of root-induced processes affect phosphorus (P) uptake efficiency by plants. To assess the influence of variation in the lengths of roots and root hairs and rhizosphere processes on the efficiency of soil phosphorus (P) uptake, a pot experiment with a low-P soil and eight selected genotypes of cowpea (Vigna unguiculata (L) WALP) was conducted. Root length, root diameter and root hair length were measured to estimate the soil volume exploited by roots and root hairs. The total soil P was considered as a pool of Olsen-P, extractable with 0.5 M NaHCO3 at pH 8.5, and a pool of non-Olsen-P. Model calculations were made to estimate P uptake originated from Olsen-P in the root hair zone and the Olsen-P moving by diffusion into the root hair cylinder and non-Olsen-P uptake. The mean uptake rate of P and the mean rate of non-Olsen-P depletion were also estimated. The genotypes differed significantly in lengths of roots and root hairs, and in P uptake, P uptake rates and growth. From 6 to 85% of total P uptake in the soil volume exploited by roots and root hairs was absorbed from the pool of non-Olsen-P. This indicates a considerable activity of root-induced rhizosphere processes. Hence the large differences show that traits for more P uptake-efficient plants exist in the tested cowpea genotypes. This opens the possibility to breed for more P uptake-efficient varieties as a way to bring more sparingly soluble soil P into cycling in crop production and obtain capitalisation of soil P reserves.  相似文献   

15.
We examined cluster root formation and root exudation by white lupin (Lupinus albus L. cv. Kiev Mutant) in response to growth medium and phosphorus supply in a sand/solution split-root system. The split-root system consisted of a nutrient solution compartment and a siliceous sand compartment. Phosphorus was applied at 1 (low-P plants) or 50 (high-P plants) μM as KH2PO4 to the solution compartment and at 10, 50 or 250 mg P kg−1 as hydroxyapatite (Ca-P) to the sand compartment. In contrast to the high-P plants, P concentration and P uptake in the low-P plants increased with increasing P supply to the sand compartment. The NaHCO3-extractable P was lower in the rhizosphere of the low-P plants than the high-P ones. The proton extrusion rate by the solution-grown roots of the low-P plants was higher than that of the high-P plants at the early growth stage. For the low-P plants, the proportion of dry root biomass allocated to cluster roots was higher in the solution compartment than that in the sand compartment. The citrate exudation increased in the sand compartment and decreased in the solution compartment with time, showing a lack of synchronization in citrate exudation by two root halves grown in different media. The cluster root proportion and citrate exudation in both compartments decreased with increasing shoot P concentration. An additional experiment with no P added to either root compartment showed that the proportion of cluster roots was about 9% lower in the sand than solution compartments. The results suggest that cluster root formation and citrate exudation can be significantly affected by the root growth medium in addition to being regulated by shoot P status. More P can be exploited from sparingly available Ca-P by the low-P plants than the high-P ones due to greater citrate exudation under P deficiency.  相似文献   

16.

Background and Aims

Root architectural phenes enhancing topsoil foraging are important for phosphorus acquisition. In this study, the utility of a novel phene is described, basal root whorl number (BRWN), that has significant effects on topsoil foraging in common bean (Phaseolus vulgaris).

Methods

Whorls are defined as distinct tiers of basal roots that emerge in a tetrarch fashion along the base of the hypocotyl. Wild and domesticated bean taxa as well as two recombinant inbred line (RIL) populations were screened for BRWN and basal root number (BRN). A set of six RILs contrasting for BRWN was evaluated for performance under low phosphorus availability in the greenhouse and in the field. In the greenhouse, plants were grown in a sand–soil media with low or high phosphorus availability. In the field, plants were grown in an Oxisol in Mozambique under low and moderate phosphorus availability.

Key Results

Wild bean accessions tended to have a BRWN of one or two, whereas cultivated accessions had BRWN reaching four and sometimes five. BRWN and BRN did not vary with phosphorus availability, i.e. BRWN was not a plastic trait in these genotypes. Greater BRWN was beneficial for phosphorus acquisition in low phosphorus soil. Genotypes with three whorls had almost twice the shoot biomass, greater root length and greater leaf area than related genotypes with two whorls. In low phosphorus soil, shoot phosphorus content was strongly correlated with BRWN (R2 = 0·64 in the greenhouse and R2 = 0·88 in the field). Genotypes with three whorls had shallower root systems with a greater range of basal root growth angles (from 10 to 45 ° from horizontal) than genotypes with two whorls (angles ranged from 60 to 85 ° from horizontal).

Conclusions

The results indicate that BRWN is associated with increased phosphorus acquisition and that this trait may have value for selection of genotypes with better performance in low phosphorus soils.  相似文献   

17.
The role of ethylene in growth and developmental responses to low phosphorus stress was evaluated using ethylene-insensitive 'Never-ripe' (Nr) tomato and etr1 petunia plants. Low phosphorus increased adventitious root formation in 'Pearson' (wild-type) tomato plants, but not in Nr, supporting a role for ethylene in adventitious root development and showing that ethylene is important for this aspect of phosphorus response. Low phosphorus reduced ethylene production by adventitious roots of both genotypes, suggesting that ethylene perception--not production--regulates carbon allocation to adventitious roots at the expense of other roots under low phosphorus stress. With the exception of its effect on adventitious rooting, Nr had positive effects on growth and biomass accumulation in tomato whereas etr1 tended to have negative effects on petunia. This was particularly evident during the recovery from transplanting, when the effective quantum yield of photosystem II of etr1 petunia grown with low phosphorus was significantly lower than 'Mitchell Diploid', suggesting that etr1 petunia plants may undergo more severe post-transplant stress at low phosphorus availability. Our results demonstrate that ethylene mediates adventitious root formation in response to phosphorus stress and plays an important role for quick recovery of plants exposed to multiple environmental stresses, i.e. transplanting and low phosphorus.  相似文献   

18.
豆科与禾本科作物间作能够改变作物根系生长,但不同施磷水平下间作-根系形态-磷吸收之间的关系尚未明确.本研究通过田间定位试验和根箱模拟试验,研究不同种植模式(小麦单作、蚕豆单作和小麦-蚕豆间作)和不同磷水平下小麦和蚕豆的产量、生物量、磷吸收及根系形态特征,分析探讨不同施磷条件下小麦-蚕豆间作对根系形态和磷吸收的影响.结果...  相似文献   

19.
20.
Root phenes and phene states that reduce the metabolic cost of soil exploration may improve plant growth under low phosphorus availability. We tested the hypothesis that under low phosphorus, reduced living cortical area (LCA) would increase soil exploration, phosphorus capture, biomass, and grain yield. Maize genotypes contrasting in LCA were grown in the field and in greenhouse mesocosms under optimal and suboptimal phosphorus regimes. Percent LCA in nodal roots ranged from 25% to 67%. Plants with 0.2 mm2 less LCA under low phosphorus had 75% less root segment respiration, 54% less root phosphorus content, rooted 20 cm deeper, allocated up to four times more roots between 60 and 120 cm depth, had between 20% and 150% more biomass, 35–40% greater leaf phosphorus content, and 60% greater grain yield compared with plants with high LCA. Low‐LCA plants had up to 55% less arbuscular mycorrhizal colonization in axial roots, but this decrease was not correlated with biomass or phosphorus content. The LCA components cortical cell file number and cortical cell size were important for biomass and phosphorus content under low phosphorus. These results are consistent with the hypothesis that root phenes that decrease the metabolic cost of soil exploration are adaptive under phosphorus stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号