首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA methylation: the nuts and bolts of repression   总被引:5,自引:0,他引:5  
DNA methylation is an epigenetic modification which plays an important role in chromatin organization and gene expression. DNA methylation can silence genes and repetitive elements through a process which leads to the alteration of chromatin structure. The mechanisms which target DNA methylation to specific sites in the genome are not fully understood. In this review, we will discuss the mechanisms which lead to the long-term silencing of genes and will survey the progression that has been made in determining the targeted mechanisms for de novo DNA methylation.  相似文献   

3.
Galitskiĭ VA 《Tsitologiia》2008,50(4):277-286
We have discovered that 5'-CG-3' dinucleotide and 5'-CNG-3' trinucleotide are found in published sequences of small interfering RNA and microRNA more often than they should be found in a random sequence. This circumstance is evidence of an important biological purpose of 5'-CG-3' dinucleotides and 5'-CNG-3' trinucleotides in small RNA sequences. We suppose that small RNAs containing mentioned di- and trinucleotides participate in creation of chromatin marks of epigenetic information through high-specific search of DNA sequences liable to repression and through initiation of the methylation de novo of 5'-CG-3' and 5'-CNG-3' sites in DNA fragments, which appeared to be bound complementary with small RNA. Several genes can be inactivated simultaneously when they contain the motif which is recognized by small RNA. Allelic exclusion appears, to our opinion, as a result of initiation by small RNA of de novo DNA methylation of all alleles but one that exist in the cell. The predecessor of this small RNA is transcribed from the antiparallel allele chain. Those alleles are inactivated which antiparallel chain is less actively read by RNA-polymerase, which, as we suppose, releases DNA from attached to it small RNA in the process of transcribing. But the quantity of small RNA which is transcribed from just one allele is insufficient to overcome the level when the repression process of this allele de novo starts.  相似文献   

4.
5.
6.
DNA methylation is an evolutionarily conserved epigenetic modification that is critical for gene silencing and the maintenance of genome integrity. In Arabidopsis thaliana, the de novo DNA methyltransferase, domains rearranged methyltransferase 2 (DRM2), is targeted to specific genomic loci by 24 nt small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). Biogenesis of the targeting siRNAs is thought to be initiated by the activity of the plant-specific RNA polymerase IV (Pol-IV). However, the mechanism through which Pol-IV is targeted to specific genomic loci and whether factors other than the core Pol-IV machinery are required for Pol-IV activity remain unknown. Through the affinity purification of nuclear RNA polymerase D1 (NRPD1), the largest subunit of the Pol-IV polymerase, we found that several previously identified RdDM components co-purify with Pol-IV, namely RNA-dependent RNA polymerase 2 (RDR2), CLASSY1 (CLSY1), and RNA-directed DNA methylation 4 (RDM4), suggesting that the upstream siRNA generating portion of the RdDM pathway may be more physically coupled than previously envisioned. A homeodomain protein, SAWADEE homeodomain homolog 1 (SHH1), was also found to co-purify with NRPD1; and we demonstrate that SHH1 is required for de novo and maintenance DNA methylation, as well as for the accumulation of siRNAs at specific loci, confirming it is a bonafide component of the RdDM pathway.  相似文献   

7.
8.
9.
In a number of organisms, transgenes containing transcribed inverted repeats (IRs) that produce hairpin RNA can trigger RNA-mediated silencing, which is associated with 21-24 nucleotide small interfering RNAs (siRNAs). In plants, IR-driven RNA silencing also causes extensive cytosine methylation of homologous DNA in both the transgene "trigger" and any other homologous DNA sequences--"targets". Endogenous genomic sequences, including transposable elements and repeated elements, are also subject to RNA-mediated silencing. The RNA silencing gene ARGONAUTE4 (AGO4) is required for maintenance of DNA methylation at several endogenous loci and for the establishment of methylation at the FWA gene. Here, we show that mutation of AGO4 substantially reduces the maintenance of DNA methylation triggered by IR transgenes, but AGO4 loss-of-function does not block the initiation of DNA methylation by IRs. AGO4 primarily affects non-CG methylation of the target sequences, while the IR trigger sequences lose methylation in all sequence contexts. Finally, we find that AGO4 and the DRM methyltransferase genes are required for maintenance of siRNAs at a subset of endogenous sequences, but AGO4 is not required for the accumulation of IR-induced siRNAs or a number of endogenous siRNAs, suggesting that AGO4 may function downstream of siRNA production.  相似文献   

10.
Tandem repeat sequences are frequently associated with gene silencing phenomena. The Arabidopsis thaliana FWA gene contains two tandem repeats and is an efficient target for RNA-directed de novo DNA methylation when it is transformed into plants. We showed that the FWA tandem repeats are necessary and sufficient for de novo DNA methylation and that repeated character rather than intrinsic sequence is likely important. Endogenous FWA can adopt either of two stable epigenetic states: methylated and silenced or unmethylated and active. Surprisingly, we found small interfering RNAs (siRNAs) associated with FWA in both states. Despite this, only the methylated form of endogenous FWA could recruit further RNA-directed DNA methylation or cause efficient de novo methylation of transgenic FWA. This suggests that RNA-directed DNA methylation occurs in two steps: first, the initial recruitment of the siRNA-producing machinery, and second, siRNA-directed DNA methylation either in cis or in trans. The efficiency of this second step varies depending on the nature of the siRNA-producing locus, and at some loci, it may require pre-existing chromatin modifications such as DNA methylation itself. Enhancement of RNA-directed DNA methylation by pre-existing DNA methylation could create a self-reinforcing system to enhance the stability of silencing. Tandem repeats throughout the Arabidopsis genome produce siRNAs, suggesting that repeat acquisition may be a general mechanism for the evolution of gene silencing.  相似文献   

11.
12.
RNA-directed DNA methylation   总被引:1,自引:0,他引:1  
DNA methylation is an important epigenetic mechanism for silencing transposons and other repetitive elements, and for stable repression of specific transgenes and endogenous genes. Plants can utilize small interfering RNAs (siRNAs) to guide de novo DNA methyltransferases for the establishment of sequence-specific DNA methylation. Genetic and biochemical approaches have identified many components involved in RNA-directed DNA methylation (RdDM). These components function in one or more of the following three aspects: biogenesis of siRNAs, production of scaffold RNAs, and the assembly of an effector complex that involves the complementary pairing between the guide siRNAs and nascent scaffold RNAs and that recruits the DNA methyltransferases. Recent studies not only unveiled new molecular players and novel interactions, but also suggested spatial and temporal segregation of the RdDM process within the nucleus.  相似文献   

13.
We have established that 5′-CG-3′ dinucleotide and 5′-CNG-3′ trinucleotide are found in published sequences of small interfering RNA and microRNA more often than they should be in random DNA sequences. This circumstance indicates the important biological role played by 5′-CG-3′ dinucleotides and 5′-CNG-3′ trinucleotides in small RNA sequences. We suggest that small RNAs containing these di- and trinucleotides participate in the creation of chromatin marks of epigenetic information through a highly specific search for repressible DNA sequences and through the initiation of the methylation de novo of 5′-CG-3′ and 5′-CNG-3′ sites in DNA fragments appearing to be bound complementary to small RNAs. Several genes can be inactivated simultaneously if they contain the motif recognized by small RNA. Allelic exclusion appears, in our opinion, as a result of initiation by small RNAs of DNA methylation de novo of all but one of the alleles that exist in the cell. The predecessor of this small RNA is transcribed from the antiparallel allele chain. Alleles whose antiparallel chains are less actively read by RNA polymerase, which, as we suggest, in the process of transcribing, releases DNA from small RNA bound to it, are inactivated. However, the quantity of small RNA transcribed from only one allele is insufficient to overcome the level above which the repression process of this allele is initiated de novo.  相似文献   

14.
Inputs and outputs for chromatin-targeted RNAi   总被引:1,自引:0,他引:1  
Plant gene silencing is targeted to transposons and repeated sequences by small RNAs from the RNA interference (RNAi) pathway. Like classical RNAi, RNA-directed chromatin silencing involves the cleavage of double-stranded RNA by Dicer endonucleases to create small interfering RNAs (siRNAs), which bind to the Argonaute protein. The production of double-stranded RNA (dsRNA) must be carefully controlled to prevent inappropriate silencing. A plant-specific RNA polymerase IV (Pol IV) initiates siRNA production at silent heterochromatin, but Pol IV-independent mechanisms for making dsRNA also exist. Downstream of siRNA biogenesis, multiple chromatin marks might be targeted by Argonaute-siRNA complexes, yet mechanisms of chromatin modification remain poorly understood. Genomic studies of siRNA target loci promise to reveal novel biological functions for chromatin-targeted RNAi.  相似文献   

15.
RNA polymerase III (Pol III) as well as Pol II (35S) promoters are able to drive hairpin RNA (hpRNA) expression and induce target gene silencing in plants. siRNAs of 21 nt are the predominant species in a 35S Pol II line, whereas 24- and/or 22-nucleotide (nt) siRNAs are produced by a Pol III line. The 35S line accumulated the loop of the hpRNA, in contrast to full-length hpRNA in the Pol III line. These suggest that Pol II and Pol III-transcribed hpRNAs are processed by different pathways. One Pol III transgene produced only 24-nt siRNAs but silenced the target gene efficiently, indicating that the 24-nt siRNAs can direct mRNA degradation; specific cleavage was confirmed by 5' rapid amplification of cDNA ends (RACE). Both Pol II- and Pol III-directed hpRNA transgenes induced cytosine methylation in the target DNA. The extent of methylation is not correlated with the level of 21-nt siRNAs, suggesting that they are not effective inducers of DNA methylation. The promoter of a U6 transgene was significantly methylated, whereas the promoter of the endogenous U6 gene was almost free of cytosine methylation, suggesting that endogenous sequences are more resistant to de novo DNA methylation than are transgene constructs.  相似文献   

16.
17.
Methylation of cytosines can mediate epigenetic gene silencing and is the only known DNA modification in eukaryotes. Recent efforts to map DNA methylation across mammalian genomes revealed limited DNA methylation at regulatory regions but widespread methylation in intergenic regions and repeats. This is consistent with the idea that hypermethylation is the default epigenetic state and serves in maintaining genome integrity. DNA methylation patterns at regulatory regions are generally stable, but a minor subset of regulatory regions show variable DNA methylation between cell types, suggesting an additional dynamic component. Such promoter de novo methylation might be involved in the maintenance rather than the initiation of silencing of defined genes during development. How frequently such dynamic methylation occurs, its biological relevance and the pathways involved deserve investigation.  相似文献   

18.
19.
Cao X  Jacobsen SE 《Current biology : CB》2002,12(13):1138-1144
Proper DNA methylation patterning requires the complementary processes of de novo methylation (the initial methylation of unmethylated DNA sequences) and maintenance methylation (the faithful replication of preexisting methylation). Arabidopsis has two types of methyltransferases with demonstrated maintenance activity: MET1, which maintains CpG methylation and is homologous to mammalian DNMT1, and CHROMOMETHYLASE 3 (CMT3), which maintains CpNpG (N = A, T, C, or G) methylation and is unique to the plant kingdom. Here we describe loss-of-function mutations in the Arabidopsis DOMAINS REARRANGED METHYLASE (DRM) genes and provide evidence that they encode de novo methyltransferases. drm1 drm2 double mutants retained preexisting CpG methylation at the endogenous FWA locus but blocked de novo CpG methylation that is normally associated with FWA transgene silencing. Furthermore, drm1 drm2 double mutants blocked de novo CpNpG and asymmetric methylation and gene silencing of the endogenous SUPERMAN (SUP) gene, which is normally triggered by an inverted SUP repeat. However, drm1 drm2 double mutants did not show reactivation of previously established SUPERMAN epigenetic silenced alleles. Thus, drm mutants prevent the establishment but not the maintenance of gene silencing at FWA and SUP, suggesting that the DRMs encode the major de novo methylation enzymes affecting these genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号