首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study characterizes defects associated with abnormal mesoderm development in mouse embryos homozygous for the induced Ednrb(s-1Acrg) allele of the piebald deletion complex. The Ednrb(s-1Acrg) deletion results in recessive embryonic lethality and mutant embryos exhibit a truncated posterior body axis. The primitive streak and node become disfigured, consistent with evidence that cell migration is impaired in newly formed mesoderm. Additional defects related to mesoderm development include notochord degeneration, somite malformations, and abnormal vascular development. Arrested heart looping morphogenesis and a randomized direction of embryonic turning indicate that left-right development is also perturbed. The expression of nodal and leftb, Tgf-beta-related genes involved in a left-determinant signaling pathway, is variably lost in the left lateral plate mesoderm. Mutational analysis has demonstrated that Fgf8 and Brachyury (T) are required for normal mesoderm and left-right development and the asymmetric expression of nodal and leftb. Fgf8 expression in nascent mesoderm exiting the primitive streak is dramatically reduced in mutant embryos, and diminished T expression accompanies the progressive loss of paraxial, lateral, and primitive streak mesoderm. In contrast, axial mesoderm persists and T and nodal appear to be appropriately expressed in their specific domains in the node and notochord. We propose that this mutation disrupts a morphogenetic pathway, likely involving FGF signaling, important for the development of streak-derived posterior mesoderm and lateral morphogenesis.  相似文献   

2.
3.
Frodo proteins: modulators of Wnt signaling in vertebrate development   总被引:3,自引:0,他引:3  
The Frodo/dapper (Frd) proteins are recently discovered signaling adaptors, which functionally and physically interact with Wnt and Nodal signaling pathways during vertebrate development. The Frd1 and Frd2 genes are expressed in dynamic patterns in early embryos, frequently in cells undergoing epithelial-mesenchymal transition. The Frd proteins function in multiple developmental processes, including mesoderm and neural tissue specification, early morphogenetic cell movements, and organogenesis. Loss-of-function studies using morpholino antisense oligonucleotides demonstrate that the Frd proteins regulate Wnt signal transduction in a context-dependent manner and may be involved in Nodal signaling. The identification of Frd-associated factors and cellular targets of the Frd proteins should shed light on the molecular mechanisms underlying Frd functions in embryonic development and in cancer.  相似文献   

4.
During mouse gastrulation, cells in the primitive streak undergo epithelial–mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8–Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.  相似文献   

5.
Blood and vascular endothelial cells form in all vertebrates during gastrulation, a process in which the mesoderm of the embryo is induced and then patterned by molecules whose identity is still largely unknown. Blood islands' of primitive hematopoietic cell clusters surrounded by a layer of endothelial cells form in the yolk sac, external to the developing embryo proper. These lineages arise from a layer of extraembryonic mesoderm that is closely apposed with a layer of primitive (visceral) endoderm. Despite the identification of genes such as Flk1, SCL/tal-1, Cbfa2/Runx1/AML1 and CD34 that are expressed during the induction of primitive hematopoiesis and vasculogenesis, the early molecular and cellular events involved in these processes are not well understood. Recent work has demonstrated that extracellular signals secreted by visceral endoderm surrounding the embryo are essential for the initiation of these events. A member of the Hedgehog family of signaling molecules (Indian hedgehog) is produced by visceral endoderm, can induce formation of blood and endothelial cells in explant cultures and can reprogram prospective neurectoderm along hematopoietic and endothelial cell lineages. Hedgehog proteins also stimulate proliferation of definitive hematopoietic stem/progenitor cells. These findings may have important implications for regulating hematopoiesis and vascular development for therapeutic purposes in humans and for the development of new sources of stem cells for transplantation and gene therapy.  相似文献   

6.
The epithelial versus mesenchymal phenotypes of embryonic ectoderm and mesoderm cells of the prestreak stage pig embryos were examined by electron microscopy and molecular marker analysis. During this period the embryonic disc remained flat or slightly convex while becoming oval or pyriform in shape. Mesenchyme cells expressing vimentin were present between the embryonic disc and the underlying visceral endoderm before a primitive streak (or groove) was apparent. The migration of mesenchyme appeared to occur in lateral and posterior directions from a mass of quiescent cells located in the pointed end of the pyriform embryonic disc that expressed Brachyury; these cells are proposed to be the precursors of the primitive streak and/or form the equivalent of the mouse early gastrula organizer (EGO). Cells with the TEC-1 (or SSEA-1) epitope, the marker most frequently used to characterize pluripotent cells, were initially distributed randomly in the embryonic ectoderm and then were found to localize in an anterior crescent which may contain the precursor cells of ectoderm and neurectoderm. As mitotic figures were found only in the anterior crescent, it is proposed that at least some of these proliferating cells migrate toward the EGO. While cytokeratins were barely detectable in the embryonic ectoderm cells, vimentin expression was supposed to be associated with the migratory capacity of these cells. These findings indicate that the early step of gastrulation, migration of extraembryonic mesoderm, occurs at a prestreak stage during which the embryonic disc becomes polarized. genesis 38:13-25, 2004.  相似文献   

7.
8.
9.
General mechanisms initiating the gastrulation process in early animal development are still elusive, not least because embryonic morphology differs widely among species. The rabbit embryo is revived here as a model to study vertebrate gastrulation, because its relatively simple morphology at the appropriate stages makes interspecific differences and similarities particularly obvious between mammals and birds. Three approaches that centre on mesoderm specification as a key event at the start of gastrulation were chosen. (1) A cDNA fragment encoding 212 amino acids of the rabbit Brachyury gene was cloned by RT-PCR and used as a molecular marker for mesoderm progenitors. Whole-mount in situ hybridisation revealed single Brachyury-expressing cells in the epiblast at 6.2 days post conception, i.e. several hours before the first ingressing mesoderm cells can be detected histologically. With the anterior marginal crescent as a landmark, these mesoderm progenitors are shown to lie in a posterior quadrant of the embryonic disc, which we call the posterior gastrula extension (PGE), for reasons established during the following functional analysis. (2) Vital dye (DiI) labelling in vitro suggests that epiblast cells arrive in the PGE from anterior parts of the embryonic disc and then move within this area in a complex pattern of posterior, centripetal and anterior directions to form the primitive streak. (3) BrdU labelling shows that proliferation is reduced in the PGE, while the remaining anterior part of the embryonic disc contains several areas of increased proliferation. These results reveal similarities with the chick with respect to Brachyury expression and cellular migration. They differ, however, in that local differences in proliferation are not seen in the pre-streak avian embryo. Rather, rabbit epiblast cells start mesoderm differentiation in a way similar to Drosophila, where a transient downregulation of proliferation initiates mesoderm differentiation and, hence, gastrulation.  相似文献   

10.
The murine Brachyury (T) gene is required in mesoderm formation. Mutants carrying different T alleles show a graded severity of defects correlated with gene dosage along the body axis. The phenotypes range from shortening of the tail to the malformation of sacral vertebrae in heterozygotes, and to disruption of trunk development and embryonic death in homozygotes. Defects include a severe disturbance of the primitive streak, an early cessation of mesoderm formation and absence of the allantois and notochord, the latter resulting in an abnormality of the neural tube and somites. The T gene is expressed in nascent mesoderm and in the notochord of wild-type embryos. Here the expression of T in whole-mount mutant embryos homozygous for the T allele TWis is described. The TWis gene product is altered, but the TWis/TWis phenotype is very similar to that of T/T embryos which lack T. In early TWis/TWis embryos T expression is normal, but ceases prematurely during early organogenesis coincident with a cessation of mesoderm formation. The archenteron/node region is disrupted and the extension of the notochord precursor comes to a halt, followed by a decrease and finally a complete loss of T gene expression in the primitive streak and the head process/notochord precursor. It appears that the primary defect of the mutant embryo is the disruption of the notochord precursor in the node region which is required for axis elongation. Thus the T gene product is directly or indirectly involved in the organization of axial development.  相似文献   

11.
12.
13.
14.
Time control is a crucial issue during embryonic development.Nevertheless, little is known about how embryonic cells measuretime. Until recently, the only molecular clock known to operateduring vertebrate embryonic development was the somitogenesisclock, exclusively functioning in coordinating the precise timingof each new pair of somites formed from the presomitic mesoderm.We have recently evidenced that a similar molecular clock alsounderlies the timing at which autopod chondrogenic precursorsare laid down to form a skeletal limb element. In addition,we herein suggest that the molecular clock is not the only parallelismthat can be established between somitogenesis and limb-bud development.In an evolutionary perspective, we support the previously proposedidea that the molecular mechanisms involved in the segmentationof the body axis may have been partially reused in the mesodermof the lateral plate, thereby allowing the emergence of pairedappendages.  相似文献   

15.
Experimental manipulation of cerebral cortical areas in primates.   总被引:3,自引:0,他引:3  
The developmental mechanisms underlying the subdivision of the neocortex into structurally and functionally distinct areas is central to our understanding of the development of human cognitive capacity and the pathogenesis of congenital disorders of higher brain functions. The protomap hypothesis suggests how the cytoarchitectonic pattern of the cerebral cortex may be generated by a combination of intrinsic and extrinsic influences during embryonic development. Although little is known about the genetic and molecular mechanisms underlying this individual and species-specific diversity of cellular and synaptic architecture, experimental manipulation of development in the primate embryo provides a glimpse into the cascade of cellular events involved in the control of cell numbers, specification of neuronal phenotypes, their apportions into cytoarchitectonic areas, and establishment of area-specific synaptic circuitry.  相似文献   

16.
Specification of embryonic polarity and pattern formation in multicellular organisms requires inductive signals from neighboring cells. One approach toward understanding these interactions is to study mutations that disrupt development. Here, we demonstrate that mesd, a gene identified in the mesoderm development (mesd) deletion interval on mouse chromosome 7, is essential for specification of embryonic polarity and mesoderm induction. MESD functions in the endoplasmic reticulum as a specific chaperone for LRP5 and LRP6, which in conjunction with Frizzled, are coreceptors for canonical WNT signal transduction. Disruption of embryonic polarity and mesoderm differentiation in mesd-deficient embryos likely results from a primary defect in WNT signaling. However, phenotypic differences between mesd-deficient and wnt3(-)(/)(-) embryos suggest that MESD may function on related members of the low-density lipoprotein receptor (LDLR) family, whose members mediate diverse cellular processes ranging from cargo transport to signaling.  相似文献   

17.
Summary This study aims to describe the regulation of vimentin and cytokeratin expression during differentiation of primary mesenchymal cells in the 7 day old rabbit embryo; unusual intermediate filament protein expression patterns have already been found in this species at later embryonic stages. Double-labelling indirect immunofluorescence assays with a panel of monoclonal intermediate filament antibodies are performed on frozen sections and compared with aldehyde-fixed plastic-embedded tissues. The histological part of the study, serving as a basis for the topographical orientation in the immunostained frozen sections, emphasises many similarities between the primitive streak embryos of the rabbit and the chick. The immunohistochemical analysis reveals cytokeratin expression to varying degrees in all germ layers. Vimentin expression, always in combination with cytokeratin expression, is found in a few cells of the ectoderm, endoderm and lateral mesoderm, but not in the primary mesenchymal cells of either the primitive node or the primitive streak. The results are discussed in relation to recent experimental findings on differentiation and morphogenetic processes in the primitive streak embryo. While these complex expression patterns make it seem unlikely that intermediate filament protein subtypes are expressed independently of cellular function during development, no indication can be found for a relation between vimentin expression and the morphogenetic changes thought to be important during mesoderm formation.Supported by the Deutsche Forschungsgemeinschaft (Wa 359-9) and by the Netherlands Cancer Foundation Offprint requests to: C. Viebahn  相似文献   

18.
PTEN抑制胚胎原肠胚形成期EMT的过程   总被引:1,自引:0,他引:1  
Li Y  Wang XY  Wang LJ  Xu T  Lu XY  Cai DQ  Geng JG  Yang XS 《遗传》2011,33(6):613-619
PTEN(Phosphatase and tensin homolog)是一种重要的抑癌基因,具有非常广泛的生物学活性,例如在细胞的生长发育、迁移、凋亡和信号传导等均发挥重要作用。PTEN基因表达始于在胚胎早期的上胚层,而后主要出现在神经外胚层和胚胎中胚层结构,表明PTEN可能参与胚胎早期发育过程的细胞迁移、增殖和分化。文章主要应用在体改变早期胚胎PTEN的表达水平来观察其对上胚层至中胚层细胞转换—EMT(Epithe-lial-mesenchymal transition)的作用。首先,原位杂交结果提示,内源性PTEN表达在原条以及之后的中胚层细胞结构如体节等。在体PTEN转染实验,体外培养至HH3期的鸡胚胎,转染Wt PTEN-GFP或移植Wt PTEN-GFP原条组织至未转染的同时期的宿主胚胎相同部位后,观察到PTEN转染细胞大都由上胚层迁移至原条并滞留于原条,不再参与中胚层细胞形成。移植实验也得到相似结果,发现在Wt PTEN-GFP阳性原条组织移植后很少细胞迁移出原条。另外在原肠胚期PTEN siRNA降调胚胎一侧PTEN基因后,降调侧中胚层细胞数明显少于正常侧。上述研究结果均提示PTEN基因在胚胎原肠胚期三胚层形成过程中可能具有抑制EMT的作用。  相似文献   

19.
Gene expression profiling of beta-catenin, Cripto and Wnt3 mutant mouse embryos has been used to characterise the genetic networks that regulate early embryonic development. We have defined genes whose expression is regulated by beta-catenin during formation of the anteroposterior axis and the mesoderm, and have identified Cripto, which encodes a Nodal co-receptor, as a primary target of beta-catenin signals both in embryogenesis as well as in colon carcinoma cell lines and tissues. We have also defined groups of genes regulated by Wnt3/beta-catenin signalling during primitive streak and mesoderm formation. Our data assign a key role to beta-catenin upstream of two distinct gene expression programs during anteroposterior axis and mesoderm formation.  相似文献   

20.
Reconstituted skin from murine embryonic stem cells   总被引:16,自引:0,他引:16  
Embryonic stem (ES) cell lines can be expanded indefinitely in culture while maintaining their potential to differentiate into any cell type. During embryonic development, the skin forms as a result of reciprocal interactions between mesoderm and ectoderm. Here, we report the in vitro differentiation and enrichment of keratinocytes from murine ES cells seeded on extracellular matrix (ECM) in the presence of Bone Morphogenic Protein-4 (BMP-4) or ascorbate. The enriched preparation of keratinocytes was able to form an epidermal equivalent composed of a stratified epithelium when cultured at the air-liquid interface on a collagen-coated acellular substratum. Interestingly, an underlying cellular compartment that belongs to the fibroblast lineage was systematically formed between the reconstituted epidermis and the inert membrane. The resulting tissue displayed morphological patterns similar to normal embryonic skin, as evidenced by light and transmission electron microscopy. Immunohistochemical studies revealed expression patterns of cytokeratins, basement membrane (BM) proteins and late differentiation markers of epidermis, as well as fibroblast markers, similar to native skin. The results demonstrate the capacity of ES cells to reconstitute in vitro a fully differentiated skin. This ES-derived bioengineered skin provides a powerful tool for studying the molecular mechanisms controlling epidermal and dermal commitments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号