首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
We have investigated effects of pH on the catalytic and allosteric properties of the cGMP-stimulated cyclic nucleotide phosphodiesterase purified from calf liver. In the "activated" state, i.e., with 0.5 microM [3H]cAMP plus 1 microM cGMP or at saturating substrate concentrations (250 microM [3H]cAMP or [3H]cGMP), hydrolysis was maximal at pH 7.5-8.0 in assays of different pH. Hydrolysis of concentrations of substrate not sufficient to saturate regulatory sites and below the apparent Michaelis constant (Kmapp), i.e., 0.5 microM [3H]cAMP or 0.01 microM [3H]cGMP, was maximal at pH 9.5. Although hydrolysis of 0.5 microM [3H]cAMP increased with pH from 7.5 to 9.5, cGMP stimulation of cAMP hydrolysis decreased. As pH increased or decreased from 7.5, Hill coefficients (napp) and Vmax for cAMP decreased. Thus, assay pH affects both catalytic (Vmax) and allosteric (napp) properties. Enzyme was therefore incubated for 5 min at 30 degrees C in the presence of MgCl2 at various pHs before assay at pH 7.5. Prior exposure to different pHs from pH 6.5 to 10.0 did not alter the Vmax or cGMP-stimulated activity (assayed at pH 7.5). Incubation at high (9.0-10.0) pH did, in assays at pH 7.5, markedly increase hydrolysis of 0.5 microM [3H]cAMP and reduce Kmapp and napp. After incubation at pH 10, hydrolysis of 0.5 microM [3H]cAMP was maximally increased and was similar in the presence or absence of cGMP. Thus, after incubation at high pH, the phosphodiesterase acquires characteristics of the cGMP-stimulated form. Activation at high pH occurs at 30 degrees C but not 5 degrees C, requires MgCl2, and is prevented but not reversed by ethylenediaminetetraacetic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have investigated the effects of several phosphodiesterase inhibitors on the activity of a cGMP-stimulated cyclic nucleotide phosphodiesterase purified from calf liver supernatant. Theophylline, RO 20-1724, and MY 5445 were not effective inhibitors. With 0.5 microM [3H]cGMP as substrate or with 0.5 microM [3H]cAMP in the presence of 1 microM cGMP, activity was inhibited by papaverine, dipyridamole, isobutylmethylxanthine (IBMX), and cilostamide. With 0.5 microM [3H]cAMP as substrate, however, only cilostamide was inhibitory; papaverine, dipyridamole, and IBMX increased activity. The increase was dependent on both drug and substrate concentration with maximal stimulation (150-180%) at concentrations of cAMP between 0.5 and 2.5 microM. At higher cAMP concentrations, the three drugs were inhibitory; inhibition was maximal at approximately 40 microM and decreased at higher cAMP concentrations. Inhibition of cGMP hydrolysis was maximal at approximately 3 microM and decreased at higher concentrations. Papaverine, IBMX, dipyridamole, and cilostamide inhibited [3H] cGMP hydrolysis competitively with Ki values of 3, 6.5, 7, and 11.5 microM, respectively. Papaverine, IBMX, or dipyridamole reduced the Hill coefficient for cAMP hydrolysis from 1.8 to 1.1-1.2, and Lineweaver-Burk plots were linear or nearly linear. With cilostamide, however, Lineweaver-Burk plots remained curvilinear. Thus, three competitive inhibitors, papaverine, dipyridamole, and IBMX, can mimic substrate and effect allosteric transitions that increase catalytic activity, whereas another, cilostamide, apparently cannot. Differences in the actions of these inhibitors presumably reflect differences in the molecular requirements for effective interaction at catalytic and allosteric sites on phosphodiesterase, i.e. differences in the structure of these sites.  相似文献   

3.
Effects of fatty acids, prostaglandins, and phospholipids on the activity of purified cGMP-stimulated cyclic nucleotide phosphodiesterase from calf liver were investigated. Prostaglandins A2, E1, E2, F1 alpha, and F2 alpha, thromboxane B2, and most phospholipids were without effect; lysophosphatidylcholine was a potent inhibitor. Several saturated fatty acids (carbon chain length 14-24), at concentrations up to 1 mM, had little or no effect on hydrolysis of 0.5 microM [3H]cGMP or 0.5 microM [3H]cAMP with or without 1 microM cGMP. In general, unsaturated fatty acids were inhibitory, except for myristoleic and palmitoleic acids which increased hydrolysis of 0.5 microM [3H]cAMP. The extent of inhibition by cis-isomers correlated with the number of double bonds. Increasing concentrations of palmitoleic acid from 10 to 100 microM increased hydrolysis of [3H]cAMP with maximal activation (60%) at 100 microM; higher concentrations were inhibitory. Palmitoleic acid inhibited cGMP hydrolysis and cGMP-stimulated cAMP hydrolysis with IC50 values of 110 and 75 microM, respectively. Inhibitory effects of palmitoleic acid were completely or partially prevented by equimolar alpha-tocopherol. Palmitelaidic acid, the trans isomer, had only slightly inhibitory effects. The effects of palmitoleic acid (100 microM) were dependent on substrate concentration. Activation was maximal with 1 microM [3H]cAMP and was reduced with increasing substrate; with greater than 10 microM cAMP, palmitoleic had no effect. Inhibition of cGMP hydrolysis was maximal at 2.5 microM cGMP and was reduced with increasing cGMP; at greater than 100 microM cGMP palmitoleic acid increased hydrolysis slightly. Palmitoleic acid did not affect apparent Km or Vmax for cAMP hydrolysis, but increased the apparent Km (from 17 to 60 microM) and Vmax for cGMP hydrolysis with little or no effect on the Hill coefficient for either substrate. These results suggest that certain hydrophobic domains play an important role in modifying the catalytic specificity of the cGMP-stimulated phosphodiesterase for cAMP and cGMP.  相似文献   

4.
The binding of [3H]cGMP (guanosine 3',5'-monophosphate) to purified bovine adrenal cGMP-stimulated phosphodiesterase was measured by Millipore filtration on cellulose ester filter. [3H]cGMP-binding activity was enhanced when the assay was terminated in buffer containing 70% of saturated ammonium sulfate to dilute the enzyme and wash the filters. The cGMP-binding activity was co-purified with the phosphodiesterase activity. The binding of [3H]cGMP to purified enzyme was measured in the presence or absence of the phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine. 1-Methyl-3-isobutylxanthine showed linear competitive inhibition with respect to cGMP as substrate in the phosphodiesterase reaction but stimulated the [3H]cGMP-binding activity in the binding assay. The stimulatory effect appeared not to be the result of preservation from [3H]cGMP hydrolysis; no cGMP phosphodiesterase activity has been measured under the cGMP-binding assay conditions, in the absence or presence of the inhibitor. Half-maximal stimulation by 1-methyl-3-isobutylxanthine occurred in the 5-7 microM concentration range. The specificity of binding of [3H]cGMP was investigated by adding increasing concentration of unlabeled analogs of cAMP (adenosine 3',5'-monophosphate) and cGMP. The binding of [3H]cGMP (50 nM) was displaced by unlabeled cGMP and cAMP with the following potency: 50% displacement was reached at the 0.1 microM cGMP range and only at a fiftyfold higher cAMP concentration. Our data with comparative series of analogs (e.g. 5'-amino-5'-deoxyguanosine 3',5'-monophosphate and 3'-amino-3'-deoxyguanosine 3',5'-monophosphate) showed that the potencies of stimulation of cAMP phosphodiesterase activity parallels displacement curves or [3H]cGMP binding to purified enzyme with no correlation with phosphodiesterase inhibition sequences. Those experiments suggest that the cGMP-binding activity is directly related to the non-catalytic (allosteric) cGMP-binding site.  相似文献   

5.
Chemotactic stimulation of Dictyostelium discoideum cells induces a fast transient increase of cGMP levels which reach a peak at 10 s. Prestimulation levels are recovered in approximately 30 s, which is achieved mainly by the action of a guanosine 3',5'-monophosphate cGMP-specific phosphodiesterase. This enzyme is activated about fourfold by low cGMP concentrations. The phosphodiesterase has two distinct cGMP-binding sites: a catalytic site and an activator site. cAMP does not bind to either site; inosine 3',5'-monophosphate (cIMP) binds only to the catalytic site, whereas 8-bromoguanosine 3',5'-monophosphate (c-b8-GMP) preferentially binds to the activator site. For detailed kinetical measurements we have used [3H]cIMP as the substrate and c-b8-GMP as the activator. c-b8-GMP activated the hydrolysis of [3H]cIMP by reducing the Km, whereas the Vmax was not altered. The hydrolysis of [3H]cIMP was measured at 5-s intervals by using a new method for the separation of 5'-nucleotides from cyclic nucleotides. The hydrolysis of [3H]cIMP by nonactivated enzyme or by preactivated enzyme was linear with time, which indicates that a steady state is reached at the catalytic site within 5 s after addition of the substrate. In contrast, the hydrolysis of [3H]cIMP immediately after activation by 0.1 microM c-b8-GMP was not linear with time, but increased in a quasi-exponential manner with a time constant of 21 s. This suggests that a steady state at the activator site is only reached in 30-45 s after addition of the activator. The on-rate of activation (k1) was 3 X 10(5) M-1s-1 for c-b8-GMP and 1.4 X 10(5) M-1s-1 for cGMP. The off-rate of activation (k-1) was 0.03 s-1 for both c-b8-GMP and cGMP. The significance of these kinetic constants for the chemoattractant-mediated cGMP response in vivo is discussed.  相似文献   

6.
cGMP-dependent protein kinase contains four cGMP-binding sites which are homologous to the four cAMP-binding sites of cAMP-dependent protein kinase. The interaction of the diastereomers of adenosine 3',5'-thionophosphate, (PS)-cAMP[S] and (PR)-cAMP[S], with cGMP-dependent protein kinase has been studied. Autophosphorylation of cGMP-dependent protein kinase is stimulated by cAMP and (PS)-cAMP[S] with apparent KA values of 7 microM and 94 microM, respectively. cAMP-stimulated autophosphorylation is inhibited competitively by (PR)-cAMP[S] with a Ki value of 15 microM. The phosphorylation of the peptide substrate (Leu-Arg-Arg-Ala-Ser-Leu-Gly) is stimulated by cGMP (approx. KA 1 microM) and cAMP (approx. KA 98 microM) but neither by the (PR) nor (PS) stereoisomer of cAMP[S]. (PR)-cAMP[S] and (PS)-cAMP[S] inhibit competitively cAMP-or cGMP-stimulated phosphorylation of the peptide substrate with Ki values of 52 microM and 73 microM, respectively. (PS)-cAMP[S] stimulates the phosphorylation of the peptide substrate by an autophosphorylated enzyme. Binding of [3H]cGMP to cGMP-dependent protein kinase is inhibited by (PS)-cAMP[S] and (PR)-cAMP[S] with IC50 values of 200 microM and 15 microM, respectively. These results show that both diastereomers of cAMP[S] bind to cGMP-dependent protein kinase. (PR)-cAMP[S] has properties of a pure antagonist whereas (PS)-cAMP[S] has properties of a partial agonist. The results provide further evidence that autophosphorylation of the enzyme affects the interaction between the cGMP-binding sites and the catalytic center of the enzyme by facilitating the activation of the phosphotransferase reaction.  相似文献   

7.
Membrane-associated, Type II (cGMP-activatable) cyclic nucleotide phosphodiesterase (PDE) from rabbit brain, representing 75% of the total homogenate Type II PDE activity, was purified to apparent homogeneity. The enzyme was released from 13,000 x g particulate fractions by limited proteolysis with trypsin and fractionated using DE-52 anion-exchange, cGMP-Sepharose affinity and hydroxylapatite chromatographies. The enzyme showed 105 kDa subunits by SDS-PAGE and had a Stokes radius of 62.70 A as determined by gel filtration chromatography. Hydrolysis of cAMP or cGMP showed positive cooperativity, with cAMP kinetic behavior linearized in the presence of 2 microM cGMP. Substrate concentrations required for half maximum velocity were 28 microM for cAMP and 16 microM for cGMP. Maximum velocities were approx. 160 mumol/min per mg for both nucleotides. The apparent Kact for cGMP stimulation of cAMP hydrolysis at 5 microM substrate was 0.35 microM and maximal stimulation (3-5-fold) was achieved with 2 microM cGMP. Cyclic nucleotide hydrolysis was not enhanced by calcium/calmodulin. The purified enzyme can be labeled by cAMP-dependent protein kinase as demonstrated by the incorporation of 32P from [gamma-32P]ATP into the 105 kDa enzyme subunit. Initial experiments showed that phosphorylation of the enzyme did not significantly alter enzyme activity measured at 5 microM [3H]cAMP in the absence or presence of 2 microM cGMP or at 40 microM [3H]cGMP. Monoclonal antibodies produced against Type II PDE immunoprecipitate enzyme activity, 105 kDa protein and 32P-labeled enzyme. The 105 kDa protein was also photoaffinity labeled with [32P]cGMP. The purified Type II PDE described here is physicochemically very similar to the isozyme purified from the cytosolic fraction of several bovine tissues with the exception that it is predominantly a particulate enzyme. This difference may reflect an important regulatory mechanism governing the metabolism of cyclic nucleotides in the central nervous system.  相似文献   

8.
Cyclic-GMP-dependent protein kinase contains two binding sites for cGMP, which have different affinities for cGMP. Autophosphorylation of the enzyme affects mainly the binding of cGMP to the 'high'-affinity site (site 1). The enzyme binds cAMP and cAMP stimulates the phosphotransferase activity of the native enzyme half-maximally at 44 microM. Autophosphorylation of the enzyme decreases the apparent Ka value to 7 microM. Autophosphorylation does not affect the catalytic rate of the enzyme if measured at a saturating concentration of ATP. Tritiated cAMP apparently binds at 4 degrees C to one site with a Kd value of 3 microM. Binding to the second site is not measurable. Autophosphorylation of the enzyme increases the affinity of the high-affinity site for cAMP sixfold (Kd 0.46 microM) and allows the detection of a second site. In accordance with these data the dissociation rate of [3H]cAMP from the high-affinity site is decreased from 4.5 min-1 to 1.2 min-1 by autophosphorylation. Experiments in which unlabeled cAMP competes with [3H] cGMP for the two binding sites confirmed these results. Recalculation of the competition curves by a computer program for two binding sites indicated that autophosphorylation decreases the Kd value for binding of cAMP to the high-affinity site from 1.9 microM to 0.17 microM. Autophosphorylation does not affect significantly the affinity for the second site. Kd values for site 2 varied from 17 microM to 40 microM. These results suggest that autophosphorylation of cGMP-dependent protein kinase increases the affinity of the enzyme for cAMP by affecting mainly the properties of binding site 1.  相似文献   

9.
Intact rat peritoneal macrophages (rPM) treated with 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of phosphodiesterases (PDEs), accumulated more cGMP than untreated cells. A PDE activity toward [(3)H]cGMP was detected in the soluble and particulate fractions of rPM. The hydrolysis of cGMP was Ca(2+)/calmodulin-independent but increased in the presence of cGMP excess. Similar results were obtained when [(3)H]cAMP was used as a substrate. The hydrolytic activity towards both nucleotides was inhibited in the presence of IBMX. Therefore, the PDEs of families 2, 5, 10 and 11 are potential candidates for cGMP hydrolysis in the rPM. They may not only regulate the cGMP level in a feedback-controlled way but also link cGMP-dependent pathways with those regulated by cAMP.  相似文献   

10.
Two soluble cyclic nucleotide phosphodiesterase activities, designated Peak I (Mr = 216,000) and Peak II (Mr = 230,000), have been isolated from bovine adrenal medulla by DEAE-cellulose chromatography. Peak I has Ca2+-independent, cGMP-specific phosphodiesterase activity and Peak II has cGMP-stimulated cyclic nucleotide phosphodiesterase activity. Peak I hydrolyzes cGMP with hyperbolic kinetics and demonstrates a Km of 23 microM. Peak II hydrolyzes cGMP with hyperbolic kinetics but hydrolyzes cAMP with slightly sigmoidal kinetics and demonstrates Km values of 54 +/- 0.7 microM cGMP and 38 +/- 6 microM cAMP. Cyclic AMP and cGMP are competitive inhibitors of each other's hydrolysis, suggesting that these nucleotides may be hydrolyzed at the same catalytic site. Micromolar concentrations of cGMP cause a 5-fold stimulation of the hydrolysis of subsaturating concentrations of cAMP by the Peak II phosphodiesterase. Half-maximal activation occurs at 0.5 microM cGMP and the result of activation is a decrease in the apparent Km for cAMP. Stimulation of the hydrolysis of subsaturating concentrations of cGMP by cAMP was also detected; however, cAMP is a less potent activator of the enzyme than cGMP. Cyclic AMP causes a 1.5-fold stimulation of cGMP hydrolysis and half-maximal activation occurs at 2.5 microM cAMP.  相似文献   

11.
Soluble phosphodiesterase (EC 3.1.4.1) activity is 3-5-fold lower in superficial colonic epithelial cells compared to that in cells isolated from the lower colonic crypt. Higher phosphodiesterase activity in lower crypt cells is correlated with a 5-fold higher rate of incorporation of [3H]thymidine into DNA in these cells. DEAE-cellulose chromatography of the soluble fraction of superficial and proliferative colonic epithelial cells resulted in separation of three enzyme forms: (1) fraction I, an enzyme which hydrolyzes both cAMP and cGMP with high affinity (apparent Km cAMP = 5 +/- 1 microM, Km cGMP = 2.5 +/- 0.5 microM) and is stimulated 3-6-fold by Ca2+ plus calmodulin; (2) fraction II, a form which hydrolyzes both cAMP and cGMP with low affinity (S0.5 cAMP = 52 +/- 7 microM, S0.5 cGMP = 17 +/- 4 microM), exhibits positive copperativity with respect to substrate and shows cGMP stimulation of cAMP hydrolysis and (3) fraction III, a cAMP-specific form which exhibits biphasic kinetics, a low Km for cAMP (Km cAMP = 5 +/- 1 microM) and does not hydrolyze cGMP. The pattern of distribution of phosphodiesterase activities on DEAE-cellulose was similar in superficial and proliferative colonic epithelial cells. The higher specific activity in proliferative cells was reflected in higher activities of each of the three chromatographically distinct forms of the enzyme. In contrast to epithelial cells, the soluble fraction of homogenates of the submucosa and supporting cells exhibited phosphodiesterase forms I and II and was lacking in the form corresponding to fraction III of epithelial cells.  相似文献   

12.
Okada D  Asakawa S 《Biochemistry》2002,41(30):9672-9679
The effects of cGMP binding on the catalytic activity of cGMP-specific, cGMP-binding phosphodiesterase (PDE5) are unclear because cGMP interacts with both allosteric and catalytic sites specifically. We studied the effects of cGMP on the hydrolysis of a fluorescent substrate analogue, 2'-O-anthraniloyl cGMP, by PDE5 partially purified from rat cerebella. The preparation contained PDE5 as the major cGMP-PDE activity and was not contaminated with cAMP- or cGMP-dependent protein kinases. The Hill coefficients for hydrolysis of the analogue substrate were around 1.0 in the presence of cGMP at concentrations <0.3 microM, while they increased to 1.5 at cGMP concentrations >1 microM, suggesting allosteric activation by cGMP at concentrations close to the bulk binding constant of the enzyme. Consistent with an allosteric activation, increasing concentrations of cGMP enhanced the hydrolysis rate of fixed concentrations of 2'-O-anthraniloyl cGMP, which overcame competition between the two substrates. Such activation was not observed with cAMP, cyclic inosine 3',5'-monophosphate, or 2'-O-monobutyl cGMP, indicating specificity of cGMP. These results demonstrate that cGMP is a specific and allosteric activator of PDE5, and suggest that in cells containing PDE5, such as cerebellar Purkinje cells, intracellular cGMP concentrations may be regulated autonomously through effects of cGMP on PDE5.  相似文献   

13.
Recently, we recognized two genes, gbpA and gbpB, encoding putative cGMP-binding proteins with a Zn(2+)-hydrolase domain and two cyclic nucleotide binding domains. The Zn(2+)-hydrolase domains belong to the superfamily of beta-lactamases, also harboring a small family of class II phosphodiesterases from bacteria and lower eukaryotes. Gene inactivation and overexpression studies demonstrate that gbpA encodes the cGMP-stimulated cGMP-phosphodiesterase that was characterized biochemically previously and was shown to be involved in chemotaxis. cAMP neither activates nor is a substrate of GbpA. The gbpB gene is expressed mainly in the multicellular stage and seems to encode a dual specificity phosphodiesterase with preference for cAMP. The enzyme hydrolyses cAMP approximately 9-fold faster than cGMP and is activated by cAMP and cGMP with a K(A) value of approximately 0.7 and 2.3 microM, respectively. Cells with a deletion of the gbpB gene have increased basal and receptor stimulated cAMP levels and are sporogeneous. We propose that GbpA and GbpB hydrolyze the substrate in the Zn(2+)-hydrolase domain, whereas the cyclic nucleotide binding domains mediate activation. The human cGMP-stimulated cAMP/cGMP phosphodiesterase has similar biochemical properties, but a completely different topology: hydrolysis takes place by a class I catalytic domain and GAF domains mediate cGMP activation.  相似文献   

14.
Cyclic GMP-stimulated cyclic nucleotide phosphodiesterase purified greater than 13,000-fold to apparent homogeneity from calf liver exhibited a single protein band (Mr approximately 102,000) on polyacrylamide gel electrophoresis under denaturing conditions. Enzyme activity comigrated with the single protein peak on analytical polyacrylamide gel electrophoresis, sucrose density gradient centrifugation, and gel filtration. From the sedimentation coefficient of 6.9 S and Stokes radius of 67 A, an Mr of 201,000 and frictional ratio (f/fo) of 1.7 were calculated, suggesting that the native enzyme is a nonspherical dimer of similar, if not identical, peptides. The effectiveness of Mg2+, Mn2+, and Co2+ in supporting catalytic activity depended on the concentration of cGMP and cAMP present as substrate or effector. Over a wide range of substrate concentrations, optimal concentrations for Mg2+, Mn2+, and Co2+ were about 10, 1, and 0.2 mM, respectively. At concentrations higher than optimal, Mg2+ inhibited activity somewhat; inhibition by Co2+ (and in some instances by Mn2+) was virtually complete. At low substrate concentrations, activity with optimal Mn2+ was equal to or greater than that with Co2+ and always greater than that with Mg2+. With greater than or equal to 0.5 microM cGMP or 20 to 300 microM cAMP and for cAMP-stimulated cGMP or cGMP-stimulated cAMP hydrolysis, activity with Mg2+ greater than Mn2+ greater than Co2+. In the presence of Mg2+, the purified enzyme hydrolyzed cGMP and cAMP with kinetics suggestive of positive cooperativity. Apparent Km values were 15 and 33 microM, and maximal velocities were 200 and 170 mumol/min/mg of protein, respectively. Substitution of Mn2+ for Mg2+ increased apparent Km and reduced Vmax for cGMP with little effect on Km or Vmax for cAMP. Co2+ increased Km and reduced Vmax for both. cGMP stimulated cAMP hydrolysis approximately 32-fold in the presence of Mg2+, much less with Mn2+ or Co2+. In the presence of Mg2+, Mn2+ and Co2+ at concentrations that increased activity when present singly inhibited cGMP-stimulated cAMP hydrolysis. It appears that divalent cations as well as cyclic nucleotides affect cooperative interactions of this enzyme. Whereas Co2+ effects were observed in the presence of either cyclic nucleotide, Mn2+ effects were especially prominent when cGMP was present (either as substrate or effector).  相似文献   

15.
The possible role of type II (cGMP-stimulated cAMP hydrolysis) phosphodiesterase (PDE) in the accentuated antagonism of muscarinic effects on heart rate during beta-stimulation via endogenous nitric oxide (NO) was evaluated. The canine isolated sinoatrial node preparation was cross circulated with arterial blood of a support dog. The sinoatrial rate of the preparation was 96 +/- 5 beats/min (n = 16) at control. Methacholine (MCh; 0.01-1 microg) injected into the right coronary artery in a bolus fashion caused dose-dependent decreases in sinoatrial rate. Under an intra-arterial infusion of isoproterenol (1 microM), resulting in approximately 50% increase in sinoatrial rate, MCh-induced decreases were markedly augmented from -18 +/- 3% to -44 +/- 4% at 0.3 mg of MCh. When N(G)-nitro-L-arginine methyl ester (100 microM) or N(G)-monomethyl-L-arginine (100 microM) were continuously infused, the augmented MCh-induced decreases in sinoatrial rate were significantly suppressed (-29 +/- 3% or -25 +/- 3%, respectively, P < 0.01). Pretreatment with either 3-isobutyl-1-methylxanthine (IBMX; 20 microM), a non-selective PDE inhibitor, or amrinone (20 microM), a selective type III (cGMP inhibited cAMP hydrolysis) PDE inhibitor, doubled the isoproterenol-induced increase in the sinoatrial rate. However, the augmented MCh-induced decreases in sinoatrial rate were significantly depressed by IBMX (from -23 +/- 5% to -14 +/- 1%, P < 0.01) but not by amrinone (to -20 +/- 3%). These results suggest that MCh-induced accentuated antagonism in the sinoatrial node pacemaker activity can be modulated by endogenous NO via an activation of the type II cyclic GMP-stimulated cAMP PDE.  相似文献   

16.
Two classes of high affinity, cGMP-specific binding sites have been found in association with a peripheral membrane protein in rod outer segments. [3H]cGMP and a photoaffinity label, 8-N3-[32P]cIMP, have been used to study these cGMP binding sites. The cGMP binding sites co-migrated with rod outer segment phosphodiesterase (EC 3.1.4.17) upon Bio-Gel A-0.5m column chromatography, sucrose density gradient centrifugation, and isoelectric focusing (pI 5.35). Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 8-N3-[32P]cIMP-labeled protein also migrated in a position identical with that of purified phosphodiesterase. Scatchard analysis, using purified phosphodiesterase, revealed the presence of two classes of cGMP binding sites with apparent KD values of 0.16 and 0.83 microM. A number of observations indicated that these high affinity, cGMP-specific binding sites are distinct from the phosphodiesterase catalytic site. cAMP, which is a substrate for phosphodiesterase, did not bind to the high affinity cGMP specific sites. Limited tryptic proteolysis of phosphodiesterase resulted in a striking activation of the catalytic activity and a 96% loss of cGMP binding. 1-Methyl-3-isobutylxanthine inhibited phosphodiesterase activity and enhanced the specific binding of cGMP. Mg2+ was necessary for phosphodiesterase activity, but not for high affinity cGMP binding. Finally, phosphodiesterase activity and the cGMP-specific high affinity sites showed different stabilities on storage in phosphate buffer. These specific high affinity cGMP binding sites may be involved in the regulation of phosphodiesterase activity.  相似文献   

17.
The kinetic and regulatory properties of cGMP-activated phosphodiesterase (PDE) from human brain were studied. In double reciprocal plots the enzyme activity is characterized by a linear dependence of cAMP and a nonlinear one for cGMP. Micromolar concentrations of cGMP accelerate cAMP hydrolysis (7-14-fold) with Ka for cGMP of 0.36 microM. Stimulation of cAMP hydrolysis is accompanied by a decrease of Km with no changes in Vmax. With a rise in the cGMP concentration above 5 microM PDE activation is changed by its inhibition. Both substrates act as competitive inhibitors towards each other. The Ki value for both cGMP and cAMP is 30 microM. After the increase in the cAMP (Bt)2 concentration the activation of 5 microM cAMP hydrolysis is accompanied by the enzyme inhibition. Both analogs competitively inhibit cGMP hydrolysis with Ki of 10 and 1500 microM for cGMP(Bt)2 and cAMP(Bt)2, respectively. The data obtained point to the existence of two binding sites for cyclic nucleotides, namely, a regulatory site which is highly specific for cGMP and a catalytic site responsible for the hydrolysis of the both substrates which displays no apparent specificity either for cAMP or for cGMP. The different affinity of natural and synthetic cyclic nucleotides for these sites is determined, to a large extent, by the amino groups in the 2nd and 6th positions of the purine ring.  相似文献   

18.
In the absence of detergent, approximately 80-85% of the total cGMP-stimulated phosphodiesterase (PDE) activity in bovine brain was associated with washed particulate fractions; approximately 85-90% of the calmodulin-sensitive PDE was soluble. Particulate cGMP-stimulated PDE was higher in cerebral cortical gray matter than in other regions. Homogenization of the brain particulate fraction in 1% Lubrol increased cGMP-stimulated activity approximately 100% and calmodulin-stimulated approximately 400-500%. Although 1% Lubrol readily solubilized these PDE activities, approximately 75% of the cAMP PDE activity (0.5 microM [3H]cAMP) that was not affected by cGMP was not solubilized. This cAMP PDE activity was very sensitive to inhibition by Rolipram but not cilostamide. Thus, three different PDE types, i.e., cGMP stimulated, calmodulin sensitive, and Rolipram inhibited, are associated in different ways with crude bovine brain particulate fractions. After solubilization and purification by chromatography on cGMP-agarose, heparin-agarose, and Superose 6, the brain particulate cGMP-stimulated PDE cross-reacted with antibody raised against a cGMP-stimulated PDE purified from calf liver supernatant. The brain enzyme exhibited a slightly greater subunit Mr than did soluble forms from calf liver or bovine brain, as evidenced by protein staining or immunoblotting after polyacrylamide gel electrophoresis under denaturing conditions. Incubation of brain particulate and liver soluble cGMP-stimulated PDEs with V8 protease produced several peptides of similar size, as well as at least two distinct fragments of approximately 27 kDa from the brain and approximately 23 kDa from the liver enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Cyclic nucleotide derivatives have been used as a tool to characterize distinct catalytic sites on phosphodiesterase enzyme forms: the cGMP-stimulated enzyme from rat liver and the calmodulin-sensitive enzyme from rat or bovine brain. Under appropriate assay conditions, the analogues showed linear competitive inhibition with respect to cAMP (adenosine 3',5'-monophosphate) as substrate. The inhibition sequence of the fully activated cGMP-stimulated phosphodiesterase was identical to the inhibition sequence of the desensitized enzyme, i.e. the enzyme which has lost its ability to be stimulated by cGMP. The inhibition pattern could, therefore, not be attributed to competition with cGMP at an allosteric-activating site. Also, the inhibition sequence of the calmodulin-sensitive phosphodiesterase was maintained whether activity was basal or fully stimulated by calmodulin. When cAMP and cGMP, with identical chemical ligands substituted at the same position, were compared as inhibitors of the calmodulin-sensitive phosphodiesterase, the cGMP analogues were always the more potent suggesting that, for that enzyme, the catalytic site was sensitive to a guanine-type cyclic nucleotide structure. Comparing the two phosphodiesterases, it was possible to establish both similar and specific inhibitor potencies of cyclic nucleotide derivatives. In particular, the two enzymes exhibited large differences in analogue specificity modified at C-6, 6-chloropurine 3',5'-monophosphate or purine 3',5'-monophosphate.  相似文献   

20.
To identify amino acids that might be involved in discriminating guanosine-3',5'-cyclic phosphate (cGMP) towards adenosine-3',5'-cyclic phosphate (cAMP) binding in the cAMP-specific phosphodiesterases, alignments of different human cyclic nucleotide phosphodiesterases (PDEs) were performed. Eight amino acid residues that are highly conserved in the cAMP-hydrolysing phosphodiesterases (PDE1, PDE3, PDE4, PDE7, PDE8) and that did not show any homologies to the cGMP-specific phosphodiesterases (PDE5, PDE6, PDE9) were selected from these alignments. Using the technique of site-directed mutagenesis, derivatives of PDE4A carrying single mutations at these conserved residues (amino acid positions are given according to the human PDE4A isoform HSPDE4A4B; accession number L20965) were generated and expressed in COS1 cells. The expression products were characterised with regard to cAMP and cGMP hydrolysis and sensitivity towards type-specific inhibitors. The mutation of Phe484 toward Tyr, Ala590 toward Cys, Leu391 and Val501 towards Ala had no significant influence on substrate affinity or specificity. However, the exchange of Trp375 and Trp605 for aliphatic residues abolished catalytic activity and the exchange of Pro595 for Ile led to sevenfold decrease of substrate affinity and an 14-fold decrease of the affinity towards the PDE4-specific inhibitor 4-[3-(cyclopentoxyl)-4-methoxyphenyl]-2-pyrrolidone (rolipram). Both effects may provide evidence for a structural importance of Trp375, Trp605 and Pro595 for PDE function. By exchanging the aspartate residue for asparagine or alanine at position 440 of the human PDE4A4B isoform, the substrate specificity was altered from the highly specific cAMP hydrolysis to an equally efficient cAMP and cGMP binding and hydrolysis. In addition, the IC(50) values for common PDE4-specific inhibitors like rolipram, N-(3,5-dichlorpyrid-4-yl)-3-cyclopentyl-oxy-4-methoxy-benzamide (RPR-73401) and 8-methoxy-5-N-propyl-3-methyl-1-ethyl-imidazo[1,5-a]-pyrido[3,2-e]-pyrazinone (D-22888) were dramatically increased. These results demonstrate an important role of the aspartate at position 440 in determining substrate specificity and inhibitor susceptibility of PDE4A. The strong conservation of this residue suggests that Asp440 may play a similar role in other cAMP-PDEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号