首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural effects of in situ production of diacylglycerol by phospholipase C in pure lipid model membranes have been examined by freeze fracture electron microscopy. Phospholipase C-activity induces massive aggregation and fusion of large unilamellar lipid vesicles and leads to the formation of a 'sealed' lipid aggregate; the outer membrane of this aggregate appears to be continuous. In some areas lipid arranges into a honeycomb structure; this structure is probably a precursor of a discontinuous inverted (type II) cubic phase. Similarly, enzyme treatment of multilamellar vesicles leads to extensive membrane fusion and vesiculation. Thus morphological evidence is obtained showing the ability of phospholipase C to induce bilayer destabilization and fusion. It is speculated that phospholipase C-induced membrane fusion involves a type II fusion intermediate induced by diacylglycerol produced locally.  相似文献   

2.
Villar AV  Alonso A  Goñi FM 《Biochemistry》2000,39(46):14012-14018
Large unilamellar vesicles containing phosphatidylinositol (PI), neutral phospholipids, and cholesterol are induced to fuse by the catalytic activity of phosphatidylinositol-specific phospholipase C (PI-PLC). PI cleavage by PI-PLC is followed by vesicle aggregation, intervesicular lipid mixing, and mixing of vesicular aqueous contents. An average of 2-3 vesicles merge into a large one in the fusion process. Vesicle fusion is accompanied by leakage of vesicular contents. A novel method has been developed to monitor mixing of lipids located in the inner monolayers of the vesicles involved in fusion. Using this method, the mixing of inner monolayer lipids and that of vesicular aqueous contents are seen to occur simultaneously, thus giving rise to the fusion pore. Kinetic studies show, for fusing vesicles, second-order dependence of lipid mixing on diacylglycerol concentration in the bilayer. Varying proportions of PI in the liposomal formulation lead to different physical effects of PI-PLC. Specifically, 30-40 mol % PI lead to vesicle fusion, while with 5-10 mol % PI only hemifusion is detected, i.e., mixing of outer monolayer lipids without mixing of aqueous contents. However, when diacylglycerol is included in the bilayers containing 5 mol % PI, PI-PLC activity leads to complete fusion.  相似文献   

3.
We have investigated the initial kinetics of Ca2+-induced aggregation and fusion of phosphatidylserine large unilamellar vesicles at 3, 5 and 10 mM Ca2+ and 15, 25 and 35 degrees C, utilizing the Tb/dipicolinate (Tb/DPA) assay for mixing of aqueous vesicle contents and a resonance energy transfer (RET) assay for mixing of bilayer lipids. Separate rate constants for vesicle aggregation as well as deaggregation and for the fusion reaction itself were determined by analysis of the data in terms of a mass action kinetic model. At 15 degrees C the aggregation rate constants for either assay are the same, indicating that at this temperature all vesicle aggregation events that result in lipid mixing lead to mixing of aqueous contents as well. By contrast, at 35 degrees C the RET aggregation rate constants are higher than the Tb/DPA aggregation rate constants, indicating a significant frequency of reversible vesicle aggregation events that do result in mixing of bilayer lipids, but not in mixing of aqueous vesicle contents. In any conditions, the RET fusion rate constants are considerably higher than the Tb/DPA fusion rate constants, demonstrating the higher tendency of the vesicles, once aggregated, to mix lipids than to mix aqueous contents. This possibly reflects the formation of an intermediate fusion structure. With increasing Ca2+ concentrations the RET and the Tb/DPA fusion rate constants increase in parallel with the respective aggregation rate constants. This suggests that fusion susceptibility is conferred on the vesicles during the process of vesicle aggregation and not solely as a result of the interaction of Ca2+ with isolated vesicles. Aggregation of the vesicles in the presence of Mg2+ produces neither mixing of aqueous vesicle contents nor mixing of bilayer lipids.  相似文献   

4.
The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs) to control the fusion process. We combined large unilamellar vesicles (LUVs) containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.  相似文献   

5.
Lung surfactant secretion in alveolar type II cells occurs following lamellar body fusion with plasma membrane. Annexin A7 is a Ca2+-dependent membrane-binding protein that is postulated to promote membrane fusion during exocytosis in some cell types including type II cells. Since annexin A7 preferably binds to lamellar body membranes, we postulated that specific lipids could modify the mode of annexin A7 interaction with membranes and its membrane fusion activity. Initial studies with phospholipid vesicles containing phosphatidylserine and other lipids showed that certain lipids affected protein interaction with vesicle membranes as determined by change in protein tryptophan fluorescence, protein interaction with trans membranes, and by protein sensitivity to limited proteolysis. The presence of signaling lipids, diacylglycerol or phosphatidylinositol-4,5-bisphosphate, as minor components also modified the lipid vesicle effect on these characteristics and membrane fusion activity of annexin A7. In vitro incubation of lamellar bodies with diacylglycerol or phosphatidylinositol-4,5-bisphosphate caused their enrichment with either lipid, and increased the annexin A7 and Ca2+-mediated fusion of lamellar bodies. Treatment of isolated lung lamellar bodies with phosphatidylinositol- or phosphatidylcholine phospholipase C to increase diacylglycerol, without or with preincubation with phosphatidylinositol-4,5-bisphosphate, augmented the fusion activity of annexin A7. Thus, increased diacylglycerol in lamellar bodies following cell stimulation with secretagogues may enhance membrane fusion activity of annexin A7.  相似文献   

6.
We have studied the effect of physiological concentrations of different diacylglycerols on Ca(2+)-induced fusion between phosphatidylserine vesicles. We monitored vesicle fusion as mixing of membrane lipids under conditions where the limiting factor was the aggregation and also in conditions where this aggregation was not the limiting factor. We found that diacylglycerols have a different modulating effect on the Ca(2+)-induced fusion: i) depending on their interfacial conformation, so that 1,2-isomers of diacylglycerols containing unsaturated or short saturated acyl chains stimulated fusion and their 1,3-isomers did not, and ii) depending on their specific type of bilayer interior perturbation, so that diacylglycerols containing unsaturated or short chain saturated acyl chains stimulated fusion but those containing long-chain saturated acyl chains did not. These requirements resembled those required for the diacylglycerol activation of protein kinase C, suggesting that diacylglycerol acts in both the specific activation of this enzyme and the induction of membrane fusion through the same perturbation of lipid structure. We found that polylysine affected the stimulatory role of 1,2-dioleoylglycerol differently, depending on whether aggregation was the limiting factor of fusion. When we studied the effect of very low concentrations of diacylglycerols on the bulk structural properties of phosphatidylserine, we found that they neither significantly perturbed the thermotropic transitions of phosphatidylserine nor affected the interaction of Ca2+ with the phosphate group of phosphatidylserine. The underlying mechanism of fusion between phosphatidylserine vesicles is discussed.  相似文献   

7.
A phospholipase C/sphingomyelinase from Pseudomonas aeruginosa has been assayed on vesicles containing phosphatidylcholine, sphingomyelin, phosphatidylethanolamine and cholesterol at equimolar ratios. The enzyme activity modifies the bilayer chemical composition giving rise to diacylglycerol (DAG) and ceramide (Cer). Assays of enzyme activity, enzyme-induced aggregation and fusion have been performed. Ultrastructural evidence of vesicle fusion at various stages of the process is presented, based on cryo-EM observations. The two enzyme lipidic end-products, DAG and Cer, have opposite effects on the bilayer physical properties; the former abolishes lateral phase separation, while the latter generates a new gel phase [Sot et al., FEBS Lett. 582, 3230-3236 (2008)]. Addition of either DAG, or Cer, or both to the liposome mixture causes an increase in enzyme binding to the bilayers and a decrease in lag time of hydrolysis. These two lipids also have different effects on the enzyme activity, DAG enhancing enzyme-induced vesicle aggregation and fusion, Cer inhibiting the hydrolytic activity. These effects are explained in terms of the different physical properties of the two lipids. DAG increases bilayers fluidity and decreases lateral separation of lipids, thus increasing enzyme activity and substrate accessibility to the enzyme. Cer has the opposite effect mainly because of its tendency to sequester sphingomyelin, an enzyme substrate, into rigid domains, presumably less accessible to the enzyme.  相似文献   

8.
Villar AV  Goñi FM  Alonso A 《FEBS letters》2001,494(1-2):117-120
Diacylglycerol increased the hydrolytic activity of phosphatidylinositol-specific phospholipase C on large unilamellar vesicles containing 5-40% phosphatidylinositol. Moreover, diacylglycerol increased the rate and extent of vesicle fusion (contents mixing) induced by the enzyme. Kinetic studies of intervesicular lipid mixing revealed that fusion was limited by the frequency of contacts involving two diacylglycerol-rich domains.  相似文献   

9.
Autophagy, an important catabolic pathway involved in a broad spectrum of human diseases, implies the formation of double-membrane-bound structures called autophagosomes (AP), which engulf material to be degraded in lytic compartments. How APs form, especially how the membrane expands and eventually closes upon itself, is an area of intense research. Ubiquitin-like ATG8 has been related to both membrane expansion and membrane fusion, but the underlying molecular mechanisms are poorly understood. Here, we used two minimal reconstituted systems (enzymatic and chemical conjugation) to compare the ability of human ATG8 homologs (LC3, GABARAP, and GATE-16) to mediate membrane fusion. We found that both enzymatically and chemically lipidated forms of GATE-16 and GABARAP proteins promote extensive membrane tethering and fusion, whereas lipidated LC3 does so to a much lesser extent. Moreover, we characterize the GATE-16/GABARAP-mediated membrane fusion as a phenomenon of full membrane fusion, independently demonstrating vesicle aggregation, intervesicular lipid mixing, and intervesicular mixing of aqueous content, in the absence of vesicular content leakage. Multiple fusion events give rise to large vesicles, as seen by cryo-electron microscopy observations. We also show that both vesicle diameter and selected curvature-inducing lipids (cardiolipin, diacylglycerol, and lyso-phosphatidylcholine) can modulate the fusion process, smaller vesicle diameters and negative intrinsic curvature lipids (cardiolipin, diacylglycerol) facilitating fusion. These results strongly support the hypothesis of a highly bent structural fusion intermediate (stalk) during AP biogenesis and add to the growing body of evidence that identifies lipids as important regulators of autophagy.  相似文献   

10.
T Kobayashi  R E Pagano 《Cell》1988,55(5):797-805
We examined the interactions of lipid vesicles (liposomes) labeled with various fluorescent markers with the intracellular membranes of semi-intact ("perforated") fibroblasts. When incubations were performed in the presence of an ATP-regenerating system, both vesicle lipids and entrapped water soluble markers were transferred to the Golgi apparatus of treated cells, indicative of membrane fusion. Fusion occurred using unilamellar vesicles 30-80 nm in diameter and composed of phosphatidylcholine alone, but was inhibited when equimolar amounts of either phosphatidylserine or sphingomyelin were present in the vesicles. Lipid vesicle-Golgi membrane fusion was also inhibited by pretreatment of the perforated cells with N-ethylmaleimide. These findings suggest that lipid vesicles may be useful for delivery of labeled lipids, macromolecules, and dyes to the Golgi apparatus, and for modeling the interactions of transport vesicles with the Golgi apparatus.  相似文献   

11.
To investigate the role of membrane proteins in the fusion process, linear hydrophobic polypeptide gramicidin was used as fusogenic agent in small unilamellar vesicles (SUV) constituted of saturated lecithins. It was found that gramicidin, externally added to a suspension of vesicles, induces a reversible vesicles aggregation. When incorporated into the bilayer, gramicidin induces increase in vesicle size. The vesicle size increase was monitored by column chromatography and transmission electron microscopy. The process of vesicle size increase occurs only when the lipid membrane is in the gel state. A maximum is observed in the kinetics at a temperature of approx. 25 degrees C lower than the phase transition temperature of lipids. Higher rates of vesicle size increase are obtained as the lipid chain length increases. The process is accompanied by a release of internal vesicle content and by membrane lipid mixing.  相似文献   

12.
Cationic, O-alkylphosphatidylcholines, recently developed as DNA transfection agents, form bilayers indistinguishable from those of natural phospholipids and undergo fusion with anionic bilayers. Membrane merging (lipid mixing), contents release, and contents mixing between populations of positive vesicles containing O-ethylphosphatidylcholine (EDOPC) and negative vesicles containing dioleolylphosphatidylglycerol (DOPG) have been determined with standard fluorometric vesicle-population assays. Surface-charge densities were varied from zero to full charge. All interactions depended critically on surface-charge density, as expected from the adhesion-condensation mechanism. Membrane mixing ranged from zero to 100%, with significant mixing (>10 <70%) occurring between cationic vesicles that were fully charged and anionic vesicles that had fractional surface charges as low as 0.1. Such mixing with membranes as weakly charged as cell membranes should be relevant to transfection with cationic lipids. Unexpectedly, lipid mixing was higher at high than at low ionic strength when one lipid dispersion was prepared from EDOPC plus DOPG (in different proportions), especially when the other vesicles were of EDOPC; this may somehow be a consequence of the ability of the former mixture to assume non-lamellar phases. Leakage of aqueous contents was also a strong function of charge, with fully charged vesicles releasing essentially all of their contents less than 1 min after mixing. EDOPC was more active in this regard than was DOPG, which probably reflects stronger intermolecular interactions of DOPG. Fusion, as measured by contents mixing, exhibited maximal values of 10% at intermediate surface charge. Reduced fusion at higher charge is attributed to multiple vesicle interactions leading to rupture. The existence of previously published data on individual interactions of vesicles of the same composition made it possible for the first time to compare pairwise with population interactions, confirming the likelihood of population studies to overestimate rupture and hemifusion and underestimate true vesicle fusion.  相似文献   

13.
The kinetics of the partitioning of lipid vesicles containing acidic phospholipids in aqueous two-phase polymer systems are dependent upon the vesicle size; the larger the vesicles, the more readily they absorb to the interfaces between the two polymer phases and hence are cleared from the top phase as phase separation proceeds. The partitioning of neutral lipid vesicles is principally to the bulk interface and is the same in phase systems of both low and high electrostatic potential difference between the two phases (delta psi). The incorporation of negatively charged lipids has two effects upon partition. First, vesicles with negatively charged lipids exhibit increased bottom phase partitioning in phases of low delta psi due to an enhanced wetting of the charged lipids by the lower phase. Second, the presence of a negatively charged group on the vesicle surface results in increased partition to the interface and top phase in phase systems of high delta psi. Differences observed in the partition of vesicles containing various species of negatively charged lipid thus reflect a competition between these two opposing factors.  相似文献   

14.
J Wilschut  S Nir  J Scholma  D Hoekstra 《Biochemistry》1985,24(17):4630-4636
We have investigated the kinetics of Ca2+-induced aggregation and fusion of large unilamellar vesicles composed of an equimolar mixture of bovine heart cardiolipin and dioleoylphosphatidylcholine. Mixing of bilayer lipids was monitored with an assay based on resonance energy transfer (RET) and mixing of aqueous vesicle contents with the Tb/dipicolinate assay. The results obtained with either assay were analyzed in terms of a mass action kinetic model, providing separate rate constants for vesicle aggregation and for the fusion reaction proper. At different Ca2+ concentrations, either at 25 degrees C or at 37 degrees C, aggregation rate constants derived from the data obtained with the RET assay were the same as those derived from the Tb/dipicolinate data, indicating that mixing of bilayer lipids occurred only during vesicle aggregation events that resulted in mixing of aqueous contents as well. At 25 degrees C, identical fusion rate constants were obtained with either assay, indicating that at this temperature the probability of lipid mixing and that of aqueous contents mixing, occurring after vesicle aggregation, were the same. The fusion rate constants for the RET assay increased more steeply with increasing temperature than the fusion rate constants derived from the Tb/dipicolinate data. As a result, at 37 degrees C the tendency of the vesicles, after aggregation, to mix lipids was slightly higher than their tendency to mix aqueous contents. The aggregation rate constants increased steeply with Ca2+ concentrations increasing in a narrow range (9.5-11 mM), indicating that, in addition to a Ca2+-dependent charge neutralization on the vesicle surface, structural changes in the lipid bilayer are involved in the aggregation process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Results of a kinetic model of thermotropic L alpha----HII phase transitions are used to predict the types and order-of-magnitude rates of interactions between unilamellar vesicles that can occur by intermediates in the L alpha----HII phase transition. These interactions are: outer monolayer lipid exchange between vesicles; vesicle leakage subsequent to aggregation; and (only in systems with ratios of L alpha and HII phase structural dimensions in a certain range or with unusually large bilayer lateral compressibilities) vesicle fusion with retention of contents. It was previously proposed that inverted micellar structures mediate membrane fusion. These inverted micellar structures are thought to form in all systems with such transitions. However, I show that membrane fusion probably occurs via structures that form from these inverted micellar intermediates, and that fusion should occur in only a sub-set of lipid systems that can adopt the HII phase. For single-component phosphatidylethanolamine (PE) systems with thermotropic L alpha----HII transitions, lipid exchange should be observed starting at temperatures several degrees below TH and at all higher temperatures, where TH is the L alpha----HII transition temperature. At temperatures above TH, the HII phase forms between apposed vesicles, and eventually ruptures them (leakage). In most single-component PE systems, fusion via L alpha----HII transition intermediates should not occur. This is the behavior observed by Bentz, Ellens, Lai, Szoka, et al. in PE vesicle systems. Fusion is likely to occur under circumstances in which multilamellar samples of lipid form the so-called "inverted cubic" or "isotropic" phase. This is as observed in the mono-methyl DOPE system (Ellens, H., J. Bentz, and F. C. Szoka. 1986. Fusion of phosphatidylethanolamine containing liposomes and the mechanism of the L alpha-HII phase transition. Biochemistry. In press.) In lipid systems with L alpha----HII transitions driven by cation binding (e.g., Ca2+-cardiolipin), fusion should be more frequent than in thermotropic systems.  相似文献   

16.
A cell-free vesicle fusion assay that reproduces a subreaction in transport of pro-α-factor from the ER to the Golgi complex has been used to fractionate yeast cytosol. Purified Sec18p, Uso1p, and LMA1 in the presence of ATP and GTP satisfies the requirement for cytosol in fusion of ER-derived vesicles with Golgi membranes. Although these purified factors are sufficient for vesicle docking and fusion, overall ER to Golgi transport in yeast semi-intact cells depends on COPII proteins (components of a membrane coat that drive vesicle budding from the ER). Thus, membrane fusion is coupled to vesicle formation in ER to Golgi transport even in the presence of saturating levels of purified fusion factors. Manipulation of the semi-intact cell assay is used to distinguish freely diffusible ER- derived vesicles containing pro-α-factor from docked vesicles and from fused vesicles. Uso1p mediates vesicle docking and produces a dilution resistant intermediate. Sec18p and LMA1 are not required for the docking phase, but are required for efficient fusion of ER- derived vesicles with the Golgi complex. Surprisingly, elevated levels of Sec23p complex (a subunit of the COPII coat) prevent vesicle fusion in a reversible manner, but do not interfere with vesicle docking. Ordering experiments using the dilution resistant intermediate and reversible Sec23p complex inhibition indicate Sec18p action is required before LMA1 function.  相似文献   

17.
Liposome fusion catalytically induced by phospholipase C   总被引:2,自引:0,他引:2  
J L Nieva  F M Go?i  A Alonso 《Biochemistry》1989,28(18):7364-7367
Large unilamellar vesicles composed of phosphatidylcholine/phosphatidylethanolamine/cholesterol (50:25:25 mole ratio) were treated with phospholipase C. The early stages of phospholipid cleavage are accompanied by mixing of bilayer lipids (monitored by dequenching of octadecylrhodamine fluorescence) and leakage-free mixing of vesicle contents [measured by using 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS) and p-xylylenebis(pyridinium bromide) (DPX)]. These results are interpreted in terms of vesicle fusion induced by the catalytic activity of phospholipase C. The use of sonicated unilamellar vesicles decreases the lag time, but does not modify the amplitude, of the fusion process. The presence of both phosphatidylethanolamine and cholesterol appears to be essential for measurable fusion effects to occur with low levels of phospholipid hydrolysis. Optimal fusion rates are observed with about 10-20 enzyme molecules per large unilamellar vesicle. This system of catalytically induced liposome fusion may be of relevance for the interpretation of physiological membrane fusion processes.  相似文献   

18.
Membrane fusion plays a central role in many cell processes from vesicular transport to nuclear envelope reconstitution at mitosis but the mechanisms that underlie fusion of natural membranes are not well understood. Studies with synthetic membranes and theoretical considerations indicate that accumulation of lipids characterised by negative curvature such as diacylglycerol (DAG) facilitate fusion. However, the specific role of lipids in membrane fusion of natural membranes is not well established. Nuclear envelope (NE) assembly was used as a model for membrane fusion. A natural membrane population highly enriched in the enzyme and substrate needed to produce DAG has been isolated and is required for fusions leading to nuclear envelope formation, although it contributes only a small amount of the membrane eventually incorporated into the NE. It was postulated to initiate and regulate membrane fusion. Here we use a multidisciplinary approach including subcellular membrane purification, fluorescence spectroscopy and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM) to demonstrate that initiation of vesicle fusion arises from two unique sites where these vesicles bind to chromatin. Fusion is subsequently propagated to the endoplasmic reticulum-derived membranes that make up the bulk of the NE to ultimately enclose the chromatin. We show how initiation of multiple vesicle fusions can be controlled by localised production of DAG and propagated bidirectionally. Phospholipase C (PLCγ), GTP hydrolysis and (phosphatidylinsositol-(4,5)-bisphosphate (PtdIns(4,5)P2) are required for the latter process. We discuss the general implications of membrane fusion regulation and spatial control utilising such a mechanism.  相似文献   

19.
PlcHR(2) is the paradigm member of a novel phospholipase C/phosphatase superfamily, with members in a variety of bacterial species. This paper describes the phospholipase C and sphingomyelinase activities of PlcHR(2) when the substrate is in the form of large unilamellar vesicles, and the subsequent effects of lipid hydrolysis on vesicle and bilayer stability, including vesicle fusion. PlcHR(2) cleaves phosphatidylcholine and sphingomyelin at equal rates, but is inactive on phospholipids that lack choline head groups. Calcium in the millimolar range does not modify in any significant way the hydrolytic activity of PlcHR(2) on choline-containing phospholipids. The catalytic activity of the enzyme induces vesicle fusion, as demonstrated by the concomitant observation of intervesicular total lipid mixing, inner monolayer-lipid mixing, and aqueous contents mixing. No release of vesicular contents is detected under these conditions. The presence of phosphatidylserine in the vesicle composition does not modify significantly PlcHR(2)-induced liposome aggregation, as long as Ca(2+) is present, but completely abolishes fusion, even in the presence of the cation. Each of the various enzyme-induced phenomena have their characteristic latency periods, that increase in the order lipid hydrolysis相似文献   

20.
We report on the reversible association of anionic liposomes induced by an antimicrobial peptide (LAH4). The process has been characterized for mixed membranes of POPC and POPS at molar ratios of 1:1, 3:1, and 9:1. Although the vesicles remain in suspension in the presence of excess amounts of peptide, the addition of more lipids results in surface charge neutralization, aggregation of the liposomes, and formation of micrometer-sized structures that coexist in equilibrium with vesicles in suspension. At low ratios of anionic lipids, vesicle aggregation is a reversible process, and vesicle disassembly is observed upon inversion of the surface charge by further supplementation with anionic vesicles. In contrast, a different process, membrane fusion, occurs in the presence of high phosphatidylserine concentrations. Upon binding to membranes containing low POPS concentrations, the peptide adopts an in-plane α-helical structure, a secondary structure that is conserved during vesicle association and dissociation. Our finding that peptides are essential for vesicle aggregation contributes to a better understanding of the activity of antimicrobial peptides, and suggests an additional layer of complexity in membrane-protein lipid interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号