首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new prototype of nanoconjugate, Polycefin, was synthesized for targeted delivery of antisense oligonucleotides and monoclonal antibodies to brain tumors. The macromolecular carrier contains: 1. biodegradable, nonimmunogenic, nontoxic beta-poly(L-malic acid) of microbial origin; 2. Morpholino antisense oligonucleotides targeting laminin alpha4 and beta1 chains of laminin-8, which is specifically overexpressed in glial brain tumors; 3. monoclonal anti-transferrin receptor antibody for specific tissue targeting; 4. oligonucleotide releasing disulfide units; 5. L-valine containing, pH-sensitive membrane disrupting unit(s), 6. protective poly(ethylene glycol); 7. a fluorescent dye (optional). Highly purified modules were conjugated directly with N-hydroxysuccinimidyl ester-activated beta-poly(L-malic acid) at pendant carboxyl groups or at thiol containing spacers via thioether and disulfide bonds. Products were chemically validated by physical, chemical, and functional tests. In vitro experiments using two human glioma cell lines U87MG and T98G demonstrated that Polycefin was delivered into the tumor cells by a receptor-mediated endocytosis mechanism and was able to inhibit the synthesis of laminin-8 alpha4 and beta1 chains at the same time. Inhibition of laminin-8 expression was in agreement with the designed endosomal membrane disruption and drug releasing activity. In vivo imaging showed the accumulation of intravenously injected Polycefin in brain tumor tissue via the antibody-targeted transferrin receptor-mediated endosomal pathway in addition to a less efficient mechanism known for high molecular mass biopolymers as enhanced permeability and retention effect. Polycefin was nontoxic to normal and tumor astrocytes in a wide range of concentrations, accumulated in brain tumor, and could be used for specific targeting of several biomarkers simultaneously.  相似文献   

2.
In vivo optical imaging is potentially useful for evaluating the presence of tumor markers that are targets of molecular medicine. Here we report the synthesis and characterization of integrin alphavbeta3-targeted peptide cyclo(Lys-Arg-Gly-Asp-Phe) [c(KRGDf )] labeled with fluorescence dyes with wavelength spanning from the visible/near infrared (Cy5.5) to the true near infrared (IRDye800) for optical imaging. In vitro, the peptide-dye conjugates bound specifically to tumor cells expressing alphavbeta3. When administered intravenously into mice at a dose of 6 nmol /mouse, the conjugates accumulated in tumors expressing alphavbeta3. The tumor-to-background ratios for human KS1767 Kaposi's sarcoma in mice injected with Cy5.5-c(KRGDf ) and Cy5.5 were 5.5 and 1.5, respectively. Preinjection of c(KRGDf ) blocked the uptake of Cy5.5-c(KRGDf ) in tumors by 89%. In alphavbeta3-positive M21 and alphavbeta3-negative M21-L human melanoma, fluorescence intensity in the tumor of mice injected with IRDye800 - c(KRGDf ) was 2.3 and 1.3 times that in normal tissue, respectively. Dynamic imaging revealed that Cy5.5- c(KRGDf ) was rapidly taken up by KS1767 tumor immediately after bolus injection. The rate of its uptake in the tumor was reduced by preinjection of c(KRGDf ) in an interval time-dependent manner. Our data suggest that near-infrared fluorescence imaging may be applied to the detection of tumors expressing integrin alphavbeta3 and to the assessment of the optimal biological dose and schedule of targeted therapies.  相似文献   

3.
Targeting the tumor vasculature and selectively modifying endothelial functions is an attractive anti-tumor strategy. We prepared polyethyleneglycol modified immunoliposomes (IL) directed against vascular cell adhesion molecule 1 (VCAM-1), a surface receptor over-expressed on tumor vessels, and investigated the liposomal targetability in vitro and in vivo. In vitro, anti-VCAM-1 liposomes displayed specific binding to activated endothelial cells under static conditions, as well as under simulated blood flow conditions. The in vivo targeting of IL was analysed in mice bearing human Colo 677 tumor xenografts 30 min and 24 h post i.v. injection. Whereas biodistribution studies using [3H]-labelled liposomes displayed only marginal higher tumor accumulation of VCAM-1 targeted versus unspecific ILs, fluorescence microscopy evaluation revealed that their localisations within tumors differed strongly. VCAM-1 targeted ILs accumulated in tumor vessels with increasing intensities from 30 min to 24 h, while control ILs accumulated in the tumor tissue by passive diffusion. ILs that accumulated in non-affected organs, mainly liver and spleen, primarily co-localised with macrophages. This is the first morphological evidence for selective in vivo targeting of tumor vessels using ILs. VCAM-directed ILs are candidate drug delivery systems for therapeutic anti-cancer approaches designed to alter endothelial function.  相似文献   

4.
Fibroblast activation protein-alpha (FAPα) is a cell surface glycoprotein which is selectively expressed by tumor-associated fibroblasts in malignant tumors but rarely on normal tissues. FAPα has also been reported to promote tumor growth and invasion and therefore has been of increasing interest as a promising target for designing tumor-targeted drugs and imaging agents. Although medicinal study on FAPα inhibitors has led to the discovery of many FAPα-targeting inhibitors including a drug candidate in a phase II clinical trial, the development of imaging probes to monitor the expression and activity of FAPα in vivo has largely lagged behind. Herein, we report an activatable near-infrared (NIR) fluorescent probe (ANP(FAP)) for in vivo optical imaging of FAPα. The ANP(FAP) consists of a NIR dye (Cy5.5) and a quencher dye (QSY21) which are linked together by a short peptide sequence (KGPGPNQC) specific for FAPα cleavage. Because of the efficient fluorescence resonance energy transfer (FRET) between Cy5.5 and QSY21 in ANP(FAP), high contrast on the NIR fluorescence signal can be achieved after the cleavage of the peptide sequence by FAPα both in vitro and in vivo. In vitro assay on ANP(FAP) indicated the specificity of the probe to FAPα. The in vivo optical imaging using ANP(FAP) showed fast tumor uptake as well as high tumor to background contrast on U87MG tumor models with FAPα expression, while much lower signal and tumor contrast were observed in the C6 tumor without FAPα expression, demonstrating the in vivo targeting specificity of the ANP(FAP). Ex vivo imaging also demonstrated ANP(FAP) had high tumor uptake at 4 h post injection. Collectively, these results indicated that ANP(FAP) could serve as a useful NIR optical probe for early detection of FAPα expressing tumors.  相似文献   

5.
Visualization of GFP-expressing tumors and metastasis in vivo   总被引:4,自引:0,他引:4  
Hoffman RM 《BioTechniques》2001,30(5):1016-22, 1024-6
We have developed mouse models of metastatic cancer with genetically fluorescent tumors that can be imaged in fresh tissue, in situ, as well as externally. To achieve this capability, we have transduced the green fluorescent protein (GFP) gene, cloned from the bioluminescent jellyfish Aequorea victoria, into a series of human and rodent cancer cell lines that were selected in vitro to stably express GFP in vivo after transplantation to metastatic rodent models. Techniques were also developed for transduction of tumors by GFP in vivo. With this fluorescent tool, we detected and visualized for the first time tumors and metastasis in fresh viable tissue or in situ in host organs down to the single-cell level. GFP tumors on the colon, prostate, breast, brain, liver, lymph nodes, lung, pancreas, bone, and other organs can also be visualized externally, transcutaneously by quantitative whole-body fluorescence optical imaging. Real-time tumor and metastatic growth and angiogenesis and inhibition by representative drugs can be imaged and quantified for rapid antitumor, antimetastatic, and antiangiogenesis drug screening. The GFP-transfected tumor cells enabled a fundamental advance in the visualization of tumor growth and metastasis in real time in vivo.  相似文献   

6.
目的采用活体成像技术比较三株荧光素酶标记的小鼠乳腺癌细胞在小鼠体内生长及转移情况,为研究肿瘤转移提供理想的动物模型以及活体分析方法。方法以荧光素酶(luciferase,Luc)作为报告基因导入小鼠乳腺癌细胞4T1、66c14和4TO7中,经G418筛选获得稳定表达荧光素酶的细胞克隆并扩大培养。标记细胞稀释成1×107cells/mL,取0.1 mL进行乳腺原位及尾静脉接种BALB/c小鼠,制作小鼠乳腺原位和尾静脉移植瘤模型,比较三株细胞在小鼠体内生长及转移情况。结果获得稳定表达荧光素酶基因的细胞克隆,将Luc标记的4T1、66c14、4TO7细胞对BALB/c小鼠乳腺原位接种后7 d,均有肿瘤生长,接种后28 d,4T1细胞乳腺原位移植瘤最大,66c14细胞瘤体次之,4TO7细胞瘤体最小;接种后35 d,三株细胞乳腺原位移植瘤大小较一致,但4T1和66c14原位移植瘤均发生转移,其中4T1细胞较66c14细胞转移严重,而4TO7细胞未见转移;接种后42 d,三株细胞乳腺原位移植瘤大小无明显差别,而4T1和66c14细胞随天数的增加,移植瘤转移程度逐渐严重,4T1较66c14细胞转移更严重,呈广泛性转移,4TO7细胞仍未见转移。将Luc标记的4T1、66c14、4TO7细胞对BALB/c小鼠尾静脉接种后7 d,小动物活体成像发现小鼠肺部均能检测到荧光,其中4T1细胞接种的小鼠肺部荧光信号最强,且小鼠陆续死亡;4TO7细胞接种小鼠肺部荧光信号次之;66c14细胞接种小鼠肺部荧光信号最弱。尾静脉接种后14 d,4TO7和66c14细胞随着观察天数的增加,转移程度逐渐严重,4TO7细胞接种小鼠肺部荧光信号较66c14细胞强且小鼠陆续死亡。结论乳腺原位自发转移模型较尾静脉转移模型更真实反应了肿瘤细胞在体的转移特性,且能完整地呈现肿瘤转移的全过程,可作为研究肿瘤转移的最理想模型。  相似文献   

7.
Liposomes have been employed as drug delivery systems to target solid tumors through exploitation of the enhanced permeability and retention (EPR) effect resulting in significant reductions in systemic toxicity. Nonetheless, insufficient release of encapsulated drug from liposomes has limited their clinical efficacy. Temperature-sensitive liposomes have been engineered to provide site-specific release of drug in order to overcome the problem of limited tumor drug bioavailability. Our lab has designed and developed a heat-activated thermosensitive liposome formulation of cisplatin (CDDP), known as HTLC, to provide triggered release of CDDP at solid tumors. Heat-activated delivery in vivo was achieved in murine models using a custom-built laser-based heating apparatus that provides a conformal heating pattern at the tumor site as confirmed by MR thermometry (MRT). A fiber optic temperature monitoring device was used to measure the temperature in real-time during the entire heating period with online adjustment of heat delivery by alternating the laser power. Drug delivery was optimized under magnetic resonance (MR) image guidance by co-encapsulation of an MR contrast agent (i.e., gadoteridol) along with CDDP into the thermosensitive liposomes as a means to validate the heating protocol and to assess tumor accumulation. The heating protocol consisted of a preheating period of 5 min prior to administration of HTLC and 20 min heating post-injection. This heating protocol resulted in effective release of the encapsulated agents with the highest MR signal change observed in the heated tumor in comparison to the unheated tumor and muscle. This study demonstrated the successful application of the laser-based heating apparatus for preclinical thermosensitive liposome development and the importance of MR-guided validation of the heating protocol for optimization of drug delivery.  相似文献   

8.
We have developed a method to image tumor-associated lysosomal protease activity in a xenograft mouse model in vivo using autoquenched near-infrared fluorescence (NIRF) probes. NIRF probes were bound to a long circulating graft copolymer consisting of poly-L-lysine and methoxypolyethylene glycol succinate. Following intravenous injection, the NIRF probe carrier accumulated in solid tumors due to its long circulation time and leakage through tumor neovasculature. Intratumoral NIRF signal was generated by lysosomal proteases in tumor cells that cleave the macromolecule, thereby releasing previously quenched fluorochrome. In vivo imaging showed a 12-fold increase in NIRF signal, allowing the detection of tumors with submillimeter-sized diameters. This strategy can be used to detect such early stage tumors in vivo and to probe for specific enzyme activity.  相似文献   

9.
We have examined a hexafluorinated 2-nitroimidazole, CCI-103F, as a probe for hypoxic tumor cells by in vivo 19F magnetic resonance spectroscopy (MRS). Following initial intraperitoneal injections of the drug in tumor-bearing (Dunning R3327-AT1-Matlylu) rats, 19F spectra were obtained on an Otsuka 2.0T Vivospec spectrometer using a 1.5-cm surface coil. Signal at 1- and 2-h time points indicated initial biodistribution of drug in the tumor. At 4 and 8 h, a progressive increase in signal intensity was observed, indicating retention of drug within the tumor. Tumor signal remained detectable in 4 of 10 rats at 24 h, indicating possible nitroreductive bioactivation by hypoxic cells. Immunohistochemistry of these tumors revealed a staining pattern consistent with labeling of hypoxic cells. No detectable 19F signal was found at 24 h for the other rats, indicating complete washout of unbound drug. Immunohistochemical assessment of these tumors revealed some staining for bound drug at the periphery of necrotic zones. 31P-MRS of the tumors showed good correlation with the presence or absence of hypoxia as evaluated by 19F-MRS, T1- and T2-weighted images, and immunohistochemistry. These results provide the groundwork for further studies using this misonidazole analog for noninvasive identification of hypoxic tumor cells in vivo by MRS.  相似文献   

10.
In this report, we present a breast imaging technique combining high‐resolution near‐infrared (NIR) light induced photoacoustic tomography (PAT) with NIR dye‐labeled amino‐terminal fragments of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (NIR830‐ATF‐IONP) for breast cancer imaging using an orthotopic mouse mammary tumor model. We show that accumulation of the targeted nanoparticles in the tumor led to photoacoustic contrast enhancement due to the high absorption of iron oxide nanoparticles (IONP). NIR fluorescence images were used to validate specific delivery of NIR830‐ATF‐IONP to mouse mammary tumors. We found that systemic delivery of the targeted IONP produced 4‐ and 10‐fold enhancement in photoacoustic signals in the tumor, compared to the tumor of the mice that received non‐targeted IONP or control mice. The use of targeted nanoparticles allowed imaging of tumors located as deep as 3.1 cm beneath the normal tissues. Our study indicates the potential of the combination of photoacoustic tomography and receptor‐targeted NIR830‐ATF‐IONP as a clinical tool that can provide improved specificity and sensitivity for breast cancer detection. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Progesterone receptor (PR) is strongly associated with disease prognosis and therapeutic efficacy in hormone-related diseases such as endometriosis and breast, ovarian, and uterine cancers. Receptor status is currently determined by immunohistochemistry assays. However, noninvasive PR imaging agents could improve disease detection and help elucidate pathological molecular pathways, leading to new therapies and animal disease models. A series of water-soluble PR-targeted magnetic resonance imaging (MRI) probes were synthesized using Cu(I)-catalyzed click chemistry and evaluated in vitro and in vivo. These agents demonstrated activation of PR in vitro and preferential accumulation in PR(+) compared to PR(-) human breast cancer cells with low toxicity. In xenograft tumor models, the agents demonstrated enhanced signal intensity in PR(+) tumors compared to PR(-) tumors. The results suggest that these agents may be promising MRI probes for PR(+) diseases.  相似文献   

12.
A variety of proteases are overexpressed or activated during pathogenesis and represent important targets for therapeutic drugs. We have previously shown that optical imaging probes sensitive in the near-infrared fluorescence (NIRF) spectrum can be used for in vivo imaging of enzyme activity. In the current study, we show that these probes can be designed with specificity for specific enzymes, for example, cathepsin D which is known to be overexpressed in many tumors. A NIR cyanine fluorochrome served as the optical reporter and was attached to the amino terminal of an 11 amino acid peptide sequence with specificity for cathepsin D. The peptides were subsequently attached to a synthetic graft copolymer for efficient tumoral delivery. The close spatial proximity of the multiple fluorochromes resulted in quenching of fluorescence in the bound state. A 350-fold signal amplification was observed post cleavage during in vitro testing. Cell culture experiments using a rodent tumor cell line stably transfected with human cathepsin D confirmed enzyme specific activation within cells. This sequence but not a scrambled control sequence showed enzyme specificity in vitro. We conclude that activatable NIRF optical probes can be synthesized to potentially probe for specific enzymes in living organisms.  相似文献   

13.
Receptor targeting is an effective method of enhancing fluorescence signal in tumors for optical imaging. We previously used epidermal growth factor (EGF) conjugated to IRDye 800CW to detect and track orthotopic prostate tumors in mice. In this study, our goal was to identify a reliable assay for targeting agent integrity in vitro that correlated with signal strength in vivo. Binding of IRDye 800CW EGF to intact A431 human epidermoid carcinoma cells was quantified in a microplate assay. Specificity was confirmed by competition with unlabeled EGF or monoclonal antibody blocking. Biological activity of intact and damaged targeting agents relative to unlabeled EGF was determined by binding and stimulation of extracellular signal-regulated kinase (ERK) phosphorylation. Both assays indicated a reduction of up to 60% of the fluorescence intensity with damaged agents. Using a research prototype imaging system optimized for IRDye 800CW detection, we compared the efficacy of intact and damaged targeting agents for imaging subcutaneous tumors in mice. In live animal images and in sections of the excised tumors, damaged targeting agents consistently yielded diminished fluorescence signals corresponding to the reduction observed in microplate assays. This is the first study to directly correlate targeting agent signal strength in whole cell binding, In-Cell Western, and in vivo near-infrared imaging.  相似文献   

14.
Bioluminescence imaging (BLI) of luciferase reporters in small animal models offers an attractive approach to monitor regulation of gene expression, signal transduction, and protein-protein interactions, as well as following tumor progression, cell engraftment, infectious pathogens, and target-specific drug action. Conventional BLI can be repeated within the same animal after bolus reinjections of a bioluminescent substrate. However, intervals between image acquisitions are governed by substrate pharmacokinetics and excretion, therefore restricting temporal resolution of reinjection protocols to the order of hours, limiting analyses of processes in vivo with short time constants. To eliminate these constraints, we examined use of implanted micro-osmotic pumps for continuous, long-term delivery of bioluminescent substrates. Pump-assisted d-luciferin delivery enabled BLI for > or = 7 days from a variety of luciferase reporters. Pumps allowed direct repetitive imaging at < 5-minute intervals of the pharmacodynamics of proteasome- and IKK-inhibiting drugs in mice bearing tumors stably expressing ubiquitin-firefly luciferase or IkappaBalpha-firefly luciferase fusion reporters. Circadian oscillations in the olfactory bulbs of transgenic rats expressing firefly luciferase under the control of the period1 promoter also were temporally resolved over the course of several days. We conclude that implanted pumps provide reliable, prolonged substrate delivery for high temporal resolution BLI, traversing complications of repetitive substrate injections.  相似文献   

15.
BACKGROUND: Two prominent biological features of the advanced stages of human melanoma are their high degree of vascularity and high-level expression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor-1 (FGFR-1). Given these characteristics, human melanoma serves as an ideal model to address an important question regarding the efficacy of angiogenesis-based cancer therapy. To induce tumor growth arrest and regression, does it suffice to block expression of bFGF and/or FGFR-1 in only the melanoma cells, or is it essential to inhibit expression of bFGF and/or FGFR-1 in both the melanoma cells and the melanoma cell-interspersing vasculature? MATERIALS AND METHODS: Primary and metastatic human melanomas, grown as subcutaneous tumors in nude mice, were injected twice a week with vector constructs containing the human tyrosinase promoter and antisense- oriented human bFGF or FGFR-1 cDNA. On alternating days, the bFGF and FGFR-1 antisense-targeted tumors received injections of cyanine fluorochrome-conjugated antibodies to a human melanoma and mouse blood vessel marker. Noninvasive, dynamic fluorescence imaging was used to document the cellular events that took place inside the tumors as the result of blocking expression of bFGF or FGFR-1 in the melanoma cells. RESULTS: In vivo, ex vivo, and in vitro fluorescence imaging of the bFGF and FGFR-1 antisense-targeted tumors demonstrated that inhibiting bFGF and FGFR-1 signaling in only the melanoma cells suffices to inhibit tumor growth due to massive induction of melanoma cell apoptosis. CONCLUSIONS: The investigations presented in this study document that inhibiting expression of bFGF or FGFR-1 in only the melanoma cells is as effective in blocking tumor growth as simultaneously inhibiting bFGF or FGFR-1 synthesis in the melanoma cells and the melanoma cell-interspersing vasculature. Furthermore, blocking expression of bFGF or FGFR-1 in the melanoma cells did not lead to activation or increased production of another angiogenic molecule, suggesting the absence of a "salvage pathway" that can circumvent or rescue the blockage of bFGF/FGFR-1 in the melanoma cells.  相似文献   

16.
A pilot study on relationships of selected molecular factors (c-myc oncogene average gene copy numbers (AGCN); serum CEA and CA 15.3 antigen levels; tumor cells' DNA values), to the ex vivo chemosensitivity of primary female human breast cancer in a modified adenosine triphosphate cell viability chemosensitivity assay (ATP-CVA), was performed. Four drug combinations were tested. A group of 75 cases of female primary breast cancer was assessed. Numerous correlations were found among molecular factors tested but none, with the exception of tumor grading, of these reflected ex vivo chemosensitivity of tumors tested. The results suggest that the parameters tested may not be important factors related to adjuvant chemoresponsiveness of primary human breast cancer to tested drug combinations.  相似文献   

17.
We reported that regioselectively addressable functionalized template (RAFT)-c(-RGDfK-)(4 )presenting four cyclic (Arg-Gly-Asp) (cRGD) peptides targets integrin alpha(V)beta(3) with an improved specificity compared with monomeric cRGD. In this study, we improved this vector by creating a "stealth" molecule in which a fluorescence quencher (Q) is linked to Cy5 via a disulfide bond (-SS-). RAFT-c(-RGDfK-)(4)-Cy5-SS-Q fluorescence is quenched unless activated by reduction during internalization. RAFT-c(-RGDfK-)(4)-Cy5-SS-Q fluorescence was negligible when compared with the control but totally recovered after cleavage of the disulfide bridge. Confocal microscopy showed that only the intracellular Cy5 signal could be detected using RAFT-c(-RGDfK-)(4)-Cy5-SS-Q, confirming that uncleaved extracellular molecules are not visible. Whole-body imaging of mice bearing subcutaneous tumors injected intravenously with RAFT-c(-RGDfK-)(4)-Cy5-SS-Q showed a very significant enhancement of the fluorescent contrast in tumors compared with the unquenched molecule. Histology of the tumor confirmed the intracellular accumulation of Cy5. These results demonstrate that the presence of a labile disulfide bridge between the targeting vector and a drug mimetic is an efficient way to deliver a dye, or a drug, intracellularly. In addition, this quenched RAFT-c(-RGDfK-)(4)-Cy5-SS-Q probe is a very powerful vector for imaging tumor masses and investigating in vivo RGD-mediated internalization.  相似文献   

18.
A target-specific MRI contrast agent for tumor cells expressing high affinity folate receptor was synthesized using generation five (G5) ofpolyamidoamine (PAMAM) dendrimer. Surface modified dendrimer was functionalized for targeting with folic acid (FA) and the remaining terminal primary amines of the dendrimer were conjugated with the bifunctional NCS-DOTA chelator that forms stable complexes with gadolinium (Gd III). Dendrimer-DOTA conjugates were then complexed with GdCl3 followed by ICP-OES as well as MRI measurement of their longitudinal relaxivity (T1 s(-1) mM(-1)) of water. In xenograft tumors established in immunodeficient (SCID) mice with KB human epithelial cancer cells expressing folate receptor (FAR), the 3D MRI results showed specific and statistically significant signal enhancement in tumors generated with targeted Gd(III)-DOTA-G5-FA compared with signal generated by non-targeted Gd(III)-DOTA-G5 contrast nanoparticle. The targeted dendrimer contrast nanoparticles infiltrated tumor and were retained in tumor cells up to 48 hours post-injection of targeted contrast nanoparticle. The presence of folic acid on the dendrimer resulted in specific delivery of the nanoparticle to tissues and xenograft tumor cells expressing folate receptor in vivo. We present the specificity of the dendrimer nanoparticles for targeted cancer imaging with the prolonged clearance time compared with the current clinically approved gadodiamide (Omniscan) contrast agent. Potential application of this approach may include determination of the folate receptor status of tumors and monitoring of drug therapy.  相似文献   

19.
The leaky, heterogeneous vasculature of human tumors prevents the even distribution of systemic drugs within cancer tissues. However, techniques for studying vascular delivery systems in vivo often require complex mammalian models and time-consuming, surgical protocols. The developing chicken embryo is a well-established model for human cancer that is easily accessible for tumor imaging. To assess this model for the in vivo analysis of tumor permeability, human tumors were grown on the chorioallantoic membrane (CAM), a thin vascular membrane which overlays the growing chick embryo. The real-time movement of small fluorescent dextrans through the tumor vasculature and surrounding tissues were used to measure vascular leak within tumor xenografts. Dextran extravasation within tumor sites was selectively enhanced an interleukin-2 (IL-2) peptide fragment or vascular endothelial growth factor (VEGF). VEGF treatment increased vascular leak in the tumor core relative to surrounding normal tissue and increased doxorubicin uptake in human tumor xenografts. This new system easily visualizes vascular permeability changes in vivo and suggests that vascular permeability may be manipulated to improve chemotherapeutic targeting to tumors.  相似文献   

20.
Carbonic anhydrase IX (CA IX) is a transmembrane protein that has been shown to be greatly upregulated under conditions of hypoxia in many tumor cell lines. Tumor hypoxia is associated with impaired efficacy of cancer therapies making CA IX a valuable target for preclinical and diagnostic imaging. We have developed a quantitative in vivo optical imaging method for detection of CA IX as a marker of tumor hypoxia based on a near-infrared (NIR) fluorescent derivative of the CA IX inhibitor acetazolamide (AZ). The agent (HS680) showed single digit nanomolar inhibition of CA IX as well as selectivity over other CA isoforms and demonstrated up to 25-fold upregulation of fluorescent CA IX signal in hypoxic versus normoxic cells, which could be blocked by 60%–70% with unlabeled AZ. CA IX negative cell lines (HCT-116 and MDA-MB-231), as well as a non-binding control agent on CA IX positive cells, showed low fluorescent signal under both conditions. In vivo FMT imaging showed tumor accumulation and excellent tumor definition from 6–24 hours. In vivo selectivity was confirmed by pretreatment of the mice with unlabeled AZ resulting in >65% signal inhibition. HS680 tumor signal was further upregulated >2X in tumors by maintaining tumor-bearing mice in a low oxygen (8%) atmosphere. Importantly, intravenously injected HS680 signal was co-localized specifically with both CA IX antibody and pimonidazole (Pimo), and was located away from non-hypoxic regions indicated by a Hoechst stain. Thus, we have established a spatial correlation of fluorescence signal obtained by non-invasive, tomographic imaging of HS680 with regions of hypoxia and CA IX expression. These results illustrate the potential of HS680 and combined with FMT imaging to non-invasively quantify CA IX expression as a hypoxia biomarker, crucial to the study of the underlying biology of hypoxic tumors and the development and monitoring of novel anti-cancer therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号