首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. An improved purification procedure for the brain-type creatine kinase from ox smooth muscle is described. 2. Michaelis constants show the characteristic dependence on the concentration of the second substrate: the derived constants are compared with those for the enzyme from ox brain. 3. Inhibition by iodoacetamide gives a biphasic curve and the total extent of the reaction depends on the enzyme concentration. The rate of inhibition at pH8.6 is not affected by creatine plus MgADP or by a range of simple anions. Addition of creatine plus MgADP plus either NO(3) (-) or Cl(-) ions affords 71.5 and 44% protection respectively. ADP could be replaced by 2-deoxy-ADP but not by alphabeta-methylene ADP, XDP, IDP, GDP or CDP. Nucleotides that did not protect would not act as substrates. 4. Difference-spectra measurements support the interpretation that addition of NO(3) (-) ions to the enzyme-creatine-MgADP complex causes further conformational changes in the enzyme accompanying the formation of a stable quaternary enzyme-creatine-NO(3) (-)-MgADP complex that simulates an intermediate stage in the transphosphorylation reaction. However, the enzyme structure is partially destabilized by quaternary-complex formation. IDP apparently fails to act as a substrate because it cannot induce the necessary conformational change. This behaviour is compared with that of rabbit skeletal muscle creatine kinase. 5. With pyruvate kinase from rabbit muscle, anions activate in the absence of an activating cation and either inhibit or have no effect in its presence. 6. Both activation and inhibition were competitive with respect to the substrate, phosphoenolpyruvate, and curved double-reciprocal plots were obtained. The results may be interpreted in terms of co-operatively induced conformational changes, and this is supported by difference-spectra measurements. However, the Hill coefficient of 1 was not significantly altered. 7. Inhibition by lactate plus pyruvate is less than additive, indicating that both bind to the same site on the enzyme, whereas that by lactate plus NO(3) (-) is additive, indicating binding at separate sites. It is inferred that a quaternary enzyme-pyruvate-NO(3) (-)-MgADP complex could form, but no evidence was obtained to suggest that it possessed special properties comparable with those found with creatine kinase. The implications of these findings for the unidirectional nature of the mechanism of pyruvate kinase is discussed. 8. Lactate or alpha-hydroxybutyrate could not act instead of pyruvate to form a stable quaternary complex, although both activate the K(+)-free enzyme. Only the former inhibits the K(+)-activated enzyme. The activating cation both lowers the Michaelis constant for phosphoenolpyruvate and tightens up the specificity of its binding site.  相似文献   

3.
Measuring the initial velocity is difficult in some enzyme assays where a significant fraction of the substrate is consumed. Here a solution to this problem is proposed; the time to produce a fixed amount of reaction product is measured. This time is inversely proportional to the initial velocity, and is related to the maximum velocity and Michaelis constant by a simple equation and linear plot. The method is illustrated using the reaction catalysed by pyruvate kinase.  相似文献   

4.
A reversible interconversion of two kinetically distinct forms of hepatic pyruvate kinase regulated by glucagon and insulin is demonstrated in the perfused rat liver. The regulation does not involve the total enzyme content of the liver, but rather results in a modulation of the substrate dependence. The forms of pyruvate kinase in liver homogenates are distinguished by measurements of the ratio of the enzyme activity at a subsaturating concentration of P-enolpyruvate (1.3 mM) to the activity at a saturating concentration of this substrate (6.6 mM). A low ratio form of pyruvate kinase (ratio between 0.1 and 0.2) is obtained from livers perfused with 10(-7) M glucagon or 0.1 mM adenosine 3':5'-monophosphate (cyclic AMP). A high ratio form of the enzyme is obtained from livers perfused with no hormone (ratio = 0.35 to 0.45). The regulation of pyruvate kinase by glucagon and cyclic AMP occurs within 2 min following the hormone addition to the liver. Insulin (22 milliunits/ml) counteracts the inhibition of pyruvate kinase caused by 5 X 10(-11) M glucagon, but has only a slight influence on the enzyme properties in the absence of the hyperglycemic hormone. The low ratio form of pyruvate kinase obtained from livers perfused with glucagon or cyclic AMP is unstable in liver extracts and will revert to a high ratio form within 10 min at 37 degrees or within a few hours at 0 degrees. Pyruvate kinase is quantitatively precipitated from liver supernatants with 2.5 M ammonium sulfate. This precipitation stabilizes the enzyme and preserves the kinetically distinguishable forms. The kinetic properties of the two forms of rat hepatic pyruvate kinase are examined using ammonium sulfate precipitates from the perfused rat liver. At pH 7.5 the high ratio form of the enzyme has [S]0.5 = 1.6 +/- 0.2 mM P-enolpyruvate (n = 8). The low ratio form of enzyme from livers perfused with glucagon or cyclic AMP has [S]0.5 = 2.5 +/- 0.4 mM P-enolpyruvate (n = 8). The modification of pyruvate kinase induced by glucagon does not alter the dependence of the enzyme activity on ADP (Km is approximately 0.5 mM ADP for both forms of the enzyme). Both forms are allosterically modulated by fructose 1,6-bisphosphate, L-alanine, and ATP. The changes in the kinetic properties of hepatic pyruvate kinase which follow treating the perfused rat liver with glucagon or cyclic AMP are consistent with the changes observed in the enzyme properties upon phosphorylation in vitro by a clyclic AMP-stimulated protein kinase (Ljungstr?m, O., Hjelmquist, G. and Engstr?m, L. (1974) Biochim. Biophys. Acta 358, 289--298). However, other factors also influence the enzyme activity in a similar manner and it remains to be demonstrated that the regulation of hepatic pyruvate kinase by glucagon and cyclic AMP in vivo involes a phosphorylation.  相似文献   

5.
The dependence of pyruvate kinase reaction rate on the concentration of one of the ligands--ADP or MgCl2--at constant concentrations of the other ligand was studied. The enzyme activity vs ligand concentration curves have fairly symmetrical peaks which correspond to the range of approximately equal ligand concentrations. The S-shaped dependence is observed only over the range of concentrations close to the dissociation constant for the Mg-ADP- complex (0.7 mM) under the given experimental conditions. The data obtained are consistent with the results of the first model kinetics within the framework of the London-Steck theory. The substrate for pyruvate kinase is the Mg-ADP- complex, while free Mg2+ and ADP3- competitively inhibit the enzyme. The inhibition constants are equal to 44 and 1 mM, respectively. The inhibiting effects of the metal and dinucleotide may be due to the competition with the substrate for the enzyme active site. Taking into consideration the fact that the binding of one of the ligands to the enzyme depends on the presence of the other ligand, a conclusion is drawn that Mg2+ forms a bridge with ADP3- and pyruvate kinase from adrenal cortex.  相似文献   

6.
Cytidine 5'-diphospho-1,2-diacyl-sn-glycerol (CDP-diglyceride) hydrolase, CDP-diglyceride:L-serine O-phosphatidyltransferase, and CDP-diglyceride:sn-glycero-3-phosphate phosphatidyltransferase all release CMP from their liponucleotide substrate, CDP-diglyceride. We have developed a spectrophotometric assay for these enzymes using CMP kinase, pyruvate kinase, and lactate dehydrogenase to couple the release of CMP with the oxidation of NADH. The assay for each of the phospholipid-dependent enzymes was found to be linear both with time and with enzyme concentration. The assay should prove useful for continuous monitoring of enzymatic activity, determination of initial rates of reaction, and detailed kinetic analysis of these enzymes. Since several enzymes and substrates are used in the coupled assay system, the method is limited to analysis of partially purified preparations lacking competing activities.  相似文献   

7.
The kinetics of pyruvate kinase from Saccharomyces cerevisiae were studied at 25 degrees C and pH 6.2 as a function of the concentrations of ADP, phosphoenolpyruvate, Mg2+ and either NH4+ or K+. The data were analysed by the exponential model for four substrates, obtained by extension of the model described by Ainsworth, Kinderlerer & Gregory [(1983) Biochem. J. 209, 401-411]. On that basis, it was concluded that NH4+ binding is almost non-interactive but leads to the appearance of positive interaction in the velocity response to increase in its concentration because of positive interactions with phosphoenolpyruvate and Mg2+. The data obtained with K+ lead to the same conclusions and differ only in suggesting that NH4+ is bound more strongly to the enzyme than is K+. Both data sets are used as the basis for a discussion of the substrate interactions of pyruvate kinase and it appears therefrom that the heterotropic interactions accord with what is known of the events that take place at the active site during catalysis. The paper also reports a determination of the dissociation constants for the NH4+ complexes with ADP and phosphoenolpyruvate and an examination of the simultaneous activation of pyruvate kinase by K+ and NH4+ ions.  相似文献   

8.
Phosphatidylcholine phosphatidohydrolase (EC 3.1.4.4, phospholipase D) catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid and choline. We have developed a spectrophotometric assay for phospholipase D using choline kinase, pyruvate kinase, and lactate dehydrogenase to couple the release of choline with the oxidation of NADH. The assay was linear both with time and with enzyme concentration. The assay should prove useful for continuous monitoring of enzyme activity, determination of initial rates of reaction, and detailed kinetic studies of phospholipase D. The method is limited to analysis of purified preparations of phospholipase D lacking competing activities to the coupled system.  相似文献   

9.
The use of computer-based isotach plots, relating reaction velocity to simultaneous variation of two substrates or effectors of an enzyme, in producing estimates of the parameters of enzyme rate equations was investigated. The computer program (;SYMAP') incorporates an interpolation algorithm, and the superiority of this over visual estimation in producing interpolated velocity values for the estimation of parameter values by conventional double-reciprocal plots is described. The usefulness of the SYMAP program in monitoring the process of fitting data obtained by simultaneous changes in two experimental variables is also described. It is shown that if the residual errors are weighted by a procedure described elsewhere (Ottaway, 1971b, 1973), the percentage error of the computed velocity is distributed evenly over a plot which contains a 100-fold variation in the concentration of one substrate and a 500-fold variation in the concentration of Mg(2+), and in which the velocity of the reaction (that catalysed by NAD kinase) varies over a 60-fold range. The two-dimensional percentage error plot was used to assess the limits within which an incomplete inhibition equation is valid, and to detect a discrepancy in an expected good fit, caused by an impurity in one of the substrates.  相似文献   

10.
An automatic apparatus for the study of enzyme kinetics   总被引:2,自引:2,他引:0       下载免费PDF全文
A continuous-flow apparatus is described for automatically plotting substrate saturation curves, and is suitable for use with a variety of enzymes. A linear concentration gradient of the variable substrate is combined with a fixed proportion of the other substrates and the enzyme, and after passing through a reaction coil the product concentrations are measured spectrophotometrically. Use of a 4cm. flow cell and modified spectrophotometer permits accurate measurement of NADH concentration in the region of 0.1mum. Precise control over reaction times and substrate concentration is achieved by using power-driven syringes with an integral mixer. Specimen results are given for yeast alcohol dehydrogenase.  相似文献   

11.
A flow assay device for the study of steady-state enzyme kinetics is described. The apparatus employs a peristaltic pump and has a fluorimeter as the monitoring device. An automatic data storage and handling system is used. Theoretical considerations are made on the determination of the apparent initial velocity and flow-induced distortion of the initial velocity versus initial substrate concentration profile. Several analytical expressions useful in calculating the magnitudes of errors and for designing experiments are given. The distortion of output evident in this and in a previously described apparatus of a similar kind is removed by use of Fourier deconvolution using the response of the instrument to a δ function input. Some data obtained with rabbit muscle glyceraldehyde-3-phosphate dehydrogenase, which displays nonhyperbolic kinetics, are discussed and used as an illustration of the application of the method.  相似文献   

12.
An investigation was made of the interaction of pyruvate carboxylase with its allosteric effector, acetyl-CoA, and the velocity profile of the deacylation of acetyl-CoA as a function of acetyl-CoA concentration indicated that this ligand does not bind to this enzyme in a positive homotropic co-operative manner. An examination was therefore made of the factors that contribute to the sigmoidicity of the rate curves obtained for pyruvate carboxylation with various concentrations of acetyl-CoA. Hill coefficients for acetyl-CoA obtained with both sheep and chicken liver pyruvate carboxylases were found to be dependent on the fixed pyruvate concentration used in the assay solution. Thus, by varying the acetyl-CoA concentration, the degree of saturation of the enzyme by pyruvate was also changed. A further consequence of non-saturating concentrations of pyruvate was that the non-productive hydrolysis of the enzyme- carboxybiotin complex increased, resulting in an under-estimate of the reaction velocity measured by oxaloacetate formation. Another factor contributing to the sigmoidicity is that, at non-saturating concentrations of acetyl-CoA, the enzyme undergoes inactivation upon dilution to low protein concentrations, again resulting in an under-estimate of the reaction velocity. Under conditions where none of the above factors was operating and the only effect of varying acetyl-CoA concentrations was to alter the proportion of the enzyme catalysing the carboxylation reaction at acetyl-CoA-dependent and -independent rates, the sigmoidicity of the acetyl-CoA velocity profile was completely eliminated.  相似文献   

13.
The mitochondrial NADP-dependent malic enzyme (EC 1.1.1.40) was purified about 300-fold from cod Gadus morhua heart to a specific activity of 48 units (mumol/min)/mg at 30 degrees C. The possibility of the reductive carboxylation of pyruvate to malate was studied by determination of the respective enzyme properties. The reverse reaction was found to proceed at about five times the velocity of the forward rate at a pH 6.5. The Km values determined at pH 7.0 for pyruvate, NADPH and bicarbonate in the carboxylation reaction were 4.1 mM, 15 microM and 13.5 mM, respectively. The Km values for malate, NADP and Mn2+ in the decarboxylation reaction were 0.1 mM, 25 microM and 5 microM, respectively. The enzyme showed substrate inhibition at high malate concentrations for the oxidative decarboxylation reaction at pH 7.0. Malate inhibition suggests a possible modulation of cod heart mitochondrial NADP-malic enzyme by its own substrate. High NADP-dependent malic enzyme activity found in mitochondria from cod heart supports the possibility of malate formation under conditions facilitating carboxylation of pyruvate.  相似文献   

14.
An automatic method for the determination of acid phosphatase substrate saturation curves is described; the curves are recorded continuously in a Technicon AuteAnalyzer in which the enzyme, at a constant pH, reacts with a gradient of substrate made using the equalized continuous flow rate technique in a closed vessel. A slightly modified method for the determination of the substrate saturation curves on the same enzyme in cell suspension, by continuous dialysis, is also reported. The method is highly accurate and makes it possible to evaluate very small kinetic variations.  相似文献   

15.
The phosphoryl transferring enzymes pyruvate kinase, cAMP-dependent protein kinase and the pyrophosphoryl transferring enzyme PP-Rib-P synthetase utilize the beta, gamma bidentate metal--ATP chelate (delta-isomer) as substrate, as determined with substitution-insert CrIIIATP or CoIII(NH3)4ATP complexes. In addition, these enzymes bind a second divalent cation, which is an essential activator for pyruvate kinase and PP-Rib-P synthetase and an inhibitor of protein kinase. The enzyme-bound metal has been used as a paramagnetic reference point in T1 measurements to determine distances to the protons and phosphorus atoms of the bound nucleotide and acceptor substrates. These distances have been used to construct models of the conformations of the bound substrates. The activating metal forms a second sphere complex of the metal-nucleotide substrate on pyruvate kinase and PP-Rib-P synthetase while the inhibitory metal directly coordinates the polyphosphate chain of the metal-nucleotide substrate on protein kinase. Essentially no change is found in the dihedral angle at the glycosidic bond of ATP upon binding to pyruvate kinase (chi = 30 degrees), an enzyme of low base specificity, but significant changes in the torsional angle of ATP occur on binding to protein kinase (chi = 84 degrees) and PP-Rib-P synthetase (chi = 62 degrees), enzymes with high adenine-base specificity. Intersubstrate distances, measured with tridentate CrATP or beta, gamma bidentate CrAMPPCP as paramagnetic reference points, have been used to deduce the distance along the reaction coordinate on each enzyme. The reaction coordinate distances on pyruvate kinase (# +/- 1 A) and PP-Rib-P synthetase (not less than 3.8 A) are consistent with associative mechanisms, while that on protein kinase (5 +/- 0.7 A) allows room for a dissociative mechanism.  相似文献   

16.
We developed a novel procedure for isolation of the muscle isozymes of aldolase, triose phosphate isomerase (TPI), glyceraldehyde phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), phosphoglycerate mutase (PGM), enolase, pyruvate kinase (PK) and lactic dehydrogenase (LDH), and also creatine kinase (CK), at high purity, specific activity and yield. Protein was extracted from chicken breast muscle and glycolytic enzymes were purified by a three step procedure consisting of: Ammonium sulfate combined with pH fractionation. Phosphocellulose chromatography with performance of high pressure liquid chromatography, exploiting a pH gradient formed by a gradient of the buffering ion for protein elution. Affinity chromatography causing elution by substrate or pH. The enzymes, obtained at over 95% purity as judged by specific activity and silver stained electropherograms, were injected into sheep. Antibody for each enzyme was purified on specific immunosorbant and its specificity was verified by immunotransfer analysis.  相似文献   

17.
A microplate assay for mevalonate and 5-phosphomevalonate kinase activities has been developed using an enzyme-coupled system of pyruvate kinase and lactate dehydrogenase. Mevalonate and 5-phosphomevalonate kinase activities were measured in crude and partially purified enzyme preparations from Catharanthus roseus suspension-cultured plant cells. The assay was validated with respect to protein and substrate concentration. Mevalonate and 5-phosphomevalonate kinase showed Michaelis-Menten kinetics with respect to ATP and their specific substrates; the apparent Km values of mevalonate kinase for ATP and mevalonate were 210 and 65 microM, respectively, and of 5-phosphomevalonate kinase for ATP and 5-phosphomevalonate were 0.41 and 0.4 mM, respectively. Considering mevalonate kinase, the relative standard deviation of enzyme activity within a determination (n = 3) is always less than 2.5% and in between determinations (n = 9) is less than 2%. The method can be used in a continuous assay as well as in a discontinuous assay.  相似文献   

18.
The phosphorylation of pig liver pyruvate kinase by cyclic adenosine 3':5'-monophosphate-dependent protein kinase has been studied. For comparison, mixed histone and a synthetic heptapeptide were also used as substrates. Protein kinase was purified by chromatography on DEAE-cellulose, hydroxyapatite, and Sephadex G-200. The enzyme was stimulated by cyclic AMP with apparent Ka values of 2.5 and 0.8 x 10-7 M for pyruvate kinase and histone substrates, respectively. Divalent cations were essential for the activity of the protein kinase. Variation of the concentration of ATP resulted in approximately straight lines in Lineweaver-Burk plots for the phosphorylation of both pyruvate kinase and mixed histone. The apparent Km values for ATP were 21 and 11 muM, respectively. The phosphorylation rate increased with the concentration of pyruvate kinase even at a concentration of 2 muM pyruvate kinase. At a high ionic strength, the phosphorylation rate of both pyruvate kinase and histone decreased. The phosphorylation rate varied markedly with pH in imidazole/HC1 and Tris/HC1 buffers. At slightly alkaline pH values, pyruvate kinase was phosphorylated at a much higher rate than pH7, but this was not the case for histone. At pH 8.5, the phosphorylation rate of pyruvate kinase was 3.5 times the rate at pH 7, while the corresponding increase for the histone phosphorylation was 50 per cent. In potassium phosphate buffers, the phosphorylation rate of both substrates did not change significantly over the pH range studied. Arrhenius' plots of the protein kinase reaction resulted in a break at about 10 degrees when pyruvate kinase was used as substrate, whereas a straight line was obtained when using histone. The negative allosteric effectors of pyruvate kinase, alanine, and phenylalanine, increased the phosphorylation rate of pyruvate kinase at pH 8 by 50 and 120 per cent, respectively. The same effectors did not influence the phosphorylation rate of mixed histone or a synthetic heptapeptide. It is concluded that the conformations adopted by pyruvate kinase in the presence of allosteric inhibitors make it a better substrate for the protein kinase.  相似文献   

19.
The effect of pH on the main kinetic parameters of pyruvate kinase function was studied. The maximal rate of the reaction as well as the values of Km for ADP and Ki for phenylalanine depend on pH and show a well-defined extremum at pH 6.8-7.0. Spectrofluorimetric titration of pyruvate kinase results in pH dependencies of changes in the fluorescence spectra parameters (e.g., quantum yield, half-width and position of the maximum). This enabled to determine the pH regions corresponding to changes in the state of tryptophan residues. Data from the enzyme inhibition by phenylalanine suggest that acidification of the medium leads to the decrease of the catalytic activity due to the protonation of the ionogenic group of the enzyme. Within the pH range of 7.0-8.0, the decrease of the pyruvate kinase activity is due to structural shifts in the enzyme molecule, as a result of which the steric complementariness of the enzyme active center with respect to the substrate (Mg.ADP) is impaired.  相似文献   

20.
A flow system was developed, using a Technicon AutoAnalyzer, that is readily adaptable to a range of enzyme assays. The system includes lines for pumping substrate, cofactor, buffer and enzyme and for generating linear gradients. By using a variable-speed proportioning pump the incubation time may be continuously varied, and the system also allows for continuous variation in the pH, substrate or cofactor concentration, incubation temperature and enzyme concentration. A FORTRAN V program was written that uses instrument calibrations to calculate the flow rates in the individual lines, the incubation time and the characteristics of the gradient used. The computer then prints out instructions for preparation of reagents to give a required reaction mixture, weighing sheets for stock solutions and the results of the assay in international units in suitable tables and graphs. The flow system and computer program are designed to facilitate the automation of manual assays. A detailed example is given of the use of the system [the assay of three dehydrogenases in yeast: l(+)-lactate dehydrogenase, d(-)-lactate dehydrogenase and succinate dehydrogenase], and the general applications of the method are discussed. The program has been deposited as Supplementary Publication no. SUP 50002 at the National Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1970), 116, 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号