共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide and changes of iron metabolism in exercise 总被引:12,自引:0,他引:12
Qian ZM 《Biological reviews of the Cambridge Philosophical Society》2002,77(4):529-536
Accumulated data imply that exercise itself might not lead to a true iron deficiency or 'sport anaemia' in a healthy athlete who has adequate iron intake. The higher prevalence of iron deficiency anaemia in younger female athletes might be not due to exercise itself, but probably results from dietary choices, inadequate iron intake and menstruation. These factors can also induce iron deficiency or anaemia in the general population. However, exercise does affect iron metabolism, leading to low or sub-optimal iron status. The underlying mechanism is unknown. In this review, recent advances in the study of the effect of exercise on iron metabolism and nitric oxide, and the relationship between nitric oxide and iron status in exercise are discussed. A hypothesis that increased production of nitric oxide might contribute to sub-optimal iron status in exercise is proposed. 相似文献
2.
Plasma nitric oxide and iron concentrations in exercised rats are negatively correlated 总被引:11,自引:0,他引:11
The aim of this study was to investigate the effect of strenuous exercise on plasma nitric oxide and iron (PI) concentrations in rats. The rats were divided into six groups: 3, 6 and 12 months of the exercise (swimming) groups and their corresponding controls. At the end of experimental periods, blood samples were collected to measure plasma NOx (nitrate and nitrite) and iron concentrations and other hematological indices. The correlative analysis of plasma NOx with PI in the exercised and the control rats was performed. The results showed that plasma NOx concentration was significantly greater and PI lower in the 3, 6, and 12 months of the exercise groups compared to their sedentary controls (p < 0.01). However, the duration of strenuous exercise had no significant effect on plasma NOx or PI contents. A negative correlation between plasma NOx and PI levels was found in all three exercise groups (r = -0.750, -0.578, and -0.808 and p < 0.01, 0.05, 0.01 respectively), but not in the sedentary control groups. These results imply that strenuous exercise may lead to an increase in plasma NOx concentration as well as a low iron level. They also suggest the possibility that the increased NO production might be associated with the development of the lower iron status in exercise. 相似文献
3.
目的:探讨一氧化氮(NO)对新生大鼠体外培养的神经干细胞(NSCs)分化的作用。方法:采用常规方法分离新生大鼠脑室下区(SVZ)组织,进行NSCs体外培养。用DETA/NO作为NO供体,用L-NAME作为一氧化氮合酶(NOS)抑制剂。免疫荧光法检测NSCs标志物-巢蛋白(nestin)、神经元标志物-8Ⅲ型微管蛋白(Tuj-1)和星型胶质细胞标志物-胶质原纤维酸性蛋白(GFAP)的表达,还检测了神经元型NOS的表达。用Greiss还原法检测培养液中总NO的浓度。结果:培养的神经球均为nestin阳性、BIdu阳性和nNOS阳性。NSCs和40μmol/L、50μmol/L、60μmol/LDEFA/N0共培养5d,实验组培养液中N0浓度较对照组显著增高(P〈0.01),相应实验组分化的神经元数和星型胶质细胞数较对照组明显增加(P〈0.01和P〈0.05)。NSCs和100μmol/L、150μmol/L、200μmol/LL-NAME共培养5d,实验组培养液中NO浓度较对照组降低(P〈0.05),相应实验组分化的神经元数和星型胶质细胞数也较对照组减少(P〈0.05)。结论:NO能直接促进大鼠SVZ体外培养的NSCs分化。 相似文献
4.
D. I. Peregud M. V. Onufriev A. A. Yakovlev M. Yu. Stepanichev N. A. Lazareva T. V. Pavlova L. F. Panchenko N. V. Gulyaeva 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2007,1(2):131-138
Activity of nitric oxide synthase (NOS) and concentrations of nitrate/nitrites (NO x ? ) were measured in brain regions of rats during spontaneous morphine withdrawal, which was modeled in male Wistar rats. The animals were injected with the increasing intraperitoneal doses (10–100 mg/kg, twice a day) of morphine hydrochloride for 6 days. Thirty six hours after the last injection the severity of the spontaneous morphine withdrawal syndrome was determined by specific autonomic and locomotor indices The withdrawal was accompanied by the increase of both NOS activity and NO x ? levels in the midbrain and hippocampus, the decrease of these parameters in striatum and hypothalamus, and lack of changes in cerebral cortex and brain stem. In cerebellum NOS activity decreased whereas NO x ? concentrations remained unchanged. In the cerebral cortex, striatum, midbrain, and cerebellum activity of NOS and NO x ? concentrations correlated with the withdrawal syndrome severity and also with the specific signs of abstinence. 相似文献
5.
Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays 总被引:1,自引:0,他引:1
BACKGROUND AND AIMS: Root growth and development are closely dependent upon nitrate supply in the growth medium. To unravel the mechanism underlying dependence of root growth on nitrate, an examination was made of whether endogenous nitric oxide (NO) is involved in nitrate-dependent growth of primary roots in maize. METHODS: Maize seedlings grown in varying concentrations of nitrate for 7 d were used to evaluate the effects on root elongation of a nitric oxide (NO) donor (sodium nitroprusside, SNP), a NO scavenger (methylene blue, MB), a nitric oxide synthase inhibitor (N(omega)-nitro-L-arginine, L-NNA), H(2)O(2), indole-3-acetic acid (IAA) and a nitric reducatse inhibitor (tungstate). The effects of these treatments on endogenous NO levels in maize root apical cells were investigated using a NO-specific fluorescent probe, 4, 5-diaminofluorescein diacetate (DAF-2DA) in association with a confocal microscopy. KEY RESULTS: Elongation of primary roots was negatively dependent on external concentrations of nitrate, and inhibition by high external nitrate was diminished when roots were treated with SNP and IAA. MB and L-NNA inhibited root elongation of plants grown in low-nitrate solution, but they had no effect on elongation of roots grown in high-nitrate solution. Tungstate inhibited root elongation grown in both low- and high-nitrate solutions. Endogenous NO levels in root apices grown in high-nitrate solution were lower than those grown in low-nitrate solution. IAA and SNP markedly enhanced endogenous NO levels in root apices grown in high nitrate, but they had no effect on endogenous NO levels in root apical cells grown in low-nitrate solution. Tungstate induced a greater increase in the endogenous NO levels in root apical cells grown in low-nitrate solution than those grown in high-nitrate solution. CONCLUSIONS: Inhibition of root elongation in maize by high external nitrate is likely to result from a reduction of nitric oxide synthase-dependent endogenous NO levels in maize root apical cells. 相似文献
6.
MAPK信号途径在一氧化氮抑制大鼠心肌肥大中的作用 总被引:31,自引:0,他引:31
实验观察了一氧化氮(NO)前体L-精氨酸对肾性高血压大鼠心肌组织eNOS蛋白表达及亚硝酸盐/硝酸盐含量、MKP-1蛋白表达及MAPK活性的影响,以及与心肌肥厚的关系,采用两肾一夹Goldblatt肾性高血压模型,随机分为5组:L-精氨酸高、中、低剂量组,分别于术后第5周给予L-精氨酸50、150及450mg/kg;L-NAME组,腹腔注射L-NAME 10mg/kg,同时给予L-精氨酸150mg/kg;高血压对照组,正常饮水,以及另设的一假手术对照组。用药8周后,用插管法测量大鼠动脉血压、左心室重与体重比值,用胶内原位磷酸化法测MFAPK活性、免疫印迹法检测心肌组织eNOS及MKP-1蛋白表达、酶还原法测定心肌组织亚硝酸盐/硝酸盐-硝酸盐含量。结果表明:(1)L-精氨酸可明显抑制肾动脉狭窄术后的血压升高、左心室重与体重比增加,增加心肌组织eNOS、MKP-1蛋白表达及亚硝酸盐-硝酸盐含量,降低心肌组织MAPK活性,其中以150mg/kg组作用最为明显;(2)NOS抑制剂L-NAME可明显抑制-精氨酸的以上作用,肾性高血压大鼠心肌组织eNOS蛋白表达下降。NO生成减少及MKP-1蛋白表达下降以及MAPK活性增强可能与高血压及心肌厚形成有关,L-精氨酸通过促进心肌组织eNOS蛋白表达、增加NO产生和MKP-1表达、减弱MAPK活性而发挥抗高血压及心肌肥厚的作用。 相似文献
7.
Effects of acute exercise on the levels of iron,magnesium, and uric acid in liver and spleen tissues 总被引:4,自引:0,他引:4
Kaptanoğlu B Turgut G Genç O Enli Y Karabulut I Zencir M Turgut S 《Biological trace element research》2003,91(2):173-177
In this study, we investigated the effects of acute exercise on tissue levels of iron, magnesium, and uric acid of rats. Twenty
adult Wistar albino rats were used for the study. They were divided into two groups: controls (n=10) and the study group (n=10). The study group was left into a small water pool and allowed to do swimming exercise for 30 min while controls rested.
All of the animals were sacrificed, and their livers and spleens removed and homogenized immediately. The iron, magnesium,
and uric acid levels of the homogenates were measured by an autoanalyzer (ILAB 900, Italy) with commercial kits from the same
company. Results were evaluated by the Mann-Whitney U-test. According to our results, the liver iron levels increased significantly with exercise, whereas spleen iron levels decreased
significantly (p<0.05) compared to controls. We found no significant differences in the levels of the other two parameters with exercise.
These results show that the iron distribution in organs changes with exercise. 相似文献
8.
The metabolic fate of nitric oxide (NO) released from nitroaspirin, benzoic acid, 2-(acetyloxy)-3-[(nitrooxy)methyl]phenyl ester (NCX 4016), the lead compound of a new class of NO-releasing non steroidal anti-inflammatory drugs (NO-NSAIDs), has been studied in the rat following p.o. and i.p. administration of 100 mg/kg, by monitoring in plasma the bioactive storage forms of NO (S-nitrosothiols, RS-NO) and its oxidation products (nitrites/nitrates, NOx) by a chemiluminescent assay. In parallel, plasma was analyzed for unchanged drug and metabolites by reverse-phase HPLC. In orally treated rats, no unchanged drug is observed in the 0-24 h interval post-dosing, but only salicylic acid (SA), NOx and RS-NO. The time-course of SA formation parallels that of plasma NOx (plateau after 6 h). Nitrosothiols in plasma are detectable at 1 h, peak at 4 h post-administration, and decline thereafter. The results relative to i.p. administration show a more pronounced and rapid NO delivery (peak of both NOx and RS-NO at 1 h and plateau between 1 and 2 h), still coincident with the peak of SA, and the presence in plasma of NCX 4015 (a metabolite of NCX 4016 which still bears the nitrate function). In myocardial tissue from p.o. treated rats, no drug or metabolites were ever detected, and the NOx levels were always in the range of the controls. Conversely, following i.p. treatment, we observed a rapid compartmentalization within the heart of the unchanged drug, which rapidly disappears in favour of its breakdown products NCX 4015 and SA, with a concomitant rise in myocardial NOx levels up to 2 h. To check the stability of NCX 4016 in the acidic gastric milieu and to explain the different distribution of the drug following p.o. or i.p. administration, the gastric content of the orally-treated animals at different post-dosing times was analysed by HPLC. The unchanged drug was detected up to 8 h post-dosing (levels slowly decreased with time), and the only metabolite to be detected was the O-deacetylated derivative (NCX 4023), which was present in low concentrations up to 4 h post-dosing. This indicates that NCX 4016 does not undergo biotransformation in the upper part of gastrointestinal tract (no direct release of NO in this district) and that the stomach acts as a reservoir for the drug. 相似文献
9.
Nitric oxide (NO) has emerged as a key signaling molecule in plant secondary metabolite biosynthesis recently. In order to
investigate the molecular basis of NO signaling in elicitor-induced secondary metabolite biosynthesis of plant cells, we determined
the contents of NO, salicylic acid (SA), jasmonic acid (JA), and puerarin in Pueraria thomsonii Benth. suspension cells treated with the elicitors prepared from cell walls of Penicillium citrinum. The results showed that the fungal elicitor induced NO burst, SA accumulation and puerarin production of P. thomsonii Benth. cells. The elicitor-induced SA accumulation and puerarin production was suppressed by nitric oxide specific scavenger
cPITO, indicating that NO was essential for elicitor-induced SA and puerarin biosynthesis in P. thomsonii Benth. cells. In transgenic NahG P. thomsonii Benth. cells, the fungal elicitor also induced puerarin biosynthesis, NO burst, and JA accumulation, though the SA biosynthesis
was impaired. The elicitor-induced JA accumulation in transgenic cells was blocked by cPITO, which suggested that JA acted
downstream of NO and its biosynthesis was controlled by NO. External application of NO via its donor sodium nitroprusside
(SNP) enhanced puerarin biosynthesis in transgenic NahG P. thomsonii Benth. cells, and the NO-triggered puerarin biosynthesis was suppressed by JA inhibitors IBU and NDGA, which indicated that
NO induced puerarin production through a JA-dependent signal pathway in the transgenic cells. Exogenous application of SA
suppressed the elicitor-induced JA biosynthesis and reversed the inhibition of IBU and NDGA on elicitor-induced puerarin accumulation
in transgenic cells, which indicated that SA inhibited JA biosynthesis in the cells and that SA might be used as a substitute
for JA to mediate the elicitor-and NO-induced puerarin biosynthesis. It was, therefore, concluded that NO might mediate the
elicitor-induced puerarin biosynthesis through SA-and JA-dependent signal pathways in wildtype P. thomsonii Benth. cells and transgenic NahG cells respectively. 相似文献
10.
辣椒素敏感传入神经和NO中介大鼠胃扩张引起的胃酸分泌和胃粘膜血流量变化 总被引:1,自引:1,他引:1
目的和方法:本文采用氢气清除法测定胃粘膜血流量以及大剂量辣椒素使传入神经失去功能的技术,观察大鼠胃扩张过程中引起胃酸分泌和胃粘膜血流量(gastric mucosal blood flow,GMBF)的变化以及传入神经和内源性NO在这一效应中的作用。结果:①大鼠胃扩张引起胃酸分泌时GMBF增加。②预先用大剂量辣椒素消除传入神经作用可阻断胃扩张引起的GMBF脚增加效应,并部分阻断胃酸分泌。③预先静脉注射一氧化氮(nitric oxide,NO)生物合成阻断剂L-nitro-L-arginine methyl ester(L-NAME)胃扩张引起的GMBF增多效应消失,同时胃酸分泌减弱。结论:辣椒素敏感传入神经和内源性NO参与胃扩张引起的胃酸分泌及胃粘膜血流增多效应。 相似文献
11.
Nitric oxide (NO) has emerged as a key signaling molecule in plant secondary metabolite biosynthesis recently. In order to
investigate the molecular basis of NO signaling in elicitor-induced secondary metabolite biosynthesis of plant cells, we determined
the contents of NO, salicylic acid (SA), jasmonic acid (JA), and puerarin in Pueraria thomsonii Benth. suspension cells treated with the elicitors prepared from cell walls of Penicillium citrinum. The results showed that the fungal elicitor induced NO burst, SA accumulation and puerarin production of P. thomsonii Benth. cells. The elicitor-induced SA accumulation and puerarin production was suppressed by nitric oxide specific scavenger
cPITO, indicating that NO was essential for elicitor-induced SA and puerarin biosynthesis in P. thomsonii Benth. cells. In transgenic NahG P. thomsonii Benth. cells, the fungal elicitor also induced puerarin biosynthesis, NO burst, and JA accumulation, though the SA biosynthesis
was impaired. The elicitor-induced JA accumulation in transgenic cells was blocked by cPITO, which suggested that JA acted
downstream of NO and its biosynthesis was controlled by NO. External application of NO via its donor sodium nitroprusside
(SNP) enhanced puerarin biosynthesis in transgenic NahG P. thomsonii Benth. cells, and the NO-triggered puerarin biosynthesis was suppressed by JA inhibitors IBU and NDGA, which indicated that
NO induced puerarin production through a JA-dependent signal pathway in the transgenic cells. Exogenous application of SA
suppressed the elicitor-induced JA biosynthesis and reversed the inhibition of IBU and NDGA on elicitor-induced puerarin accumulation
in transgenic cells, which indicated that SA inhibited JA biosynthesis in the cells and that SA might be used as a substitute
for JA to mediate the elicitor-and NO-induced puerarin biosynthesis. It was, therefore, concluded that NO might mediate the
elicitor-induced puerarin biosynthesis through SA-and JA-dependent signal pathways in wildtype P. thomsonii Benth. cells and transgenic NahG cells respectively. 相似文献
12.
Higher plants constitute one of our most important natural resources, which provide not only foodstuffs, fibers, and woods, but also many chemicals, such as flavorings, dyes, and pharmaceuticals. Although plants are renewable resources, some species are b… 相似文献
13.
The redox environment of the cell is currently thought to be extremely important to control either apoptosis or autophagy. This study reported that reactive oxygen species (ROS) and nitric oxide (NO) generations were induced by evodiamine time-dependently; while they acted in synergy to trigger mitochondria-dependent apoptosis by induction of mitochondrial membrane permeabilization (MMP) through increasing the Bax/Bcl-2 or Bcl-xL ratio. Autophagy was also stimulated by evodiamine, as demonstrated by the positive autophagosome-specific dye monodansylcadaverine (MDC) staining as well as the expressions of autophagy-related proteins, Beclin 1 and LC3. Pre-treatment with 3-MA, the specific inhibitor for autophagy, dose-dependently decreased cell viability, indicating a survival function of autophagy. Importantly, autophagy was found to be promoted or inhibited by ROS/NO in response to the severity of oxidative stress. These findings could help shed light on the complex regulation of intracellular redox status on the balance of autophagy and apoptosis in anti-cancer therapies. 相似文献
14.
Mohammad Khabbaz Shirazi Asaad Azarnezhad Mohammad Foad Abazari Mansour Poorebrahim Pegah Ghoraeian Nima Sanadgol Hanieh Bokharaie Sahar Heydari Amin Abbasi Sahra Kabiri Maryam Nouri Aleagha Seyed Ehsan Enderami Amir Savar Dashtaki Hassan Askari 《Journal of cellular physiology》2019,234(7):11411-11423
The interplay between H2S and nitric oxide (NO) is thought to contribute to renal functions. The current study was designed to assess the role of NO in mediating the renoprotective effects of hydrogen sulfide in the 5/6 nephrectomy (5/6 Nx) animal model. Forty rats were randomly assigned to 5 experimental groups: (a) Sham; (b) 5/6 Nx; (c) 5/6Nx+sodium hydrosulfide-a donor of H 2S, (5/6Nx+sodium hydrosulfide [NaHS]); (d) 5/6Nx+NaHS+ L -NAME (a nonspecific nitric oxide synthase [NOS] inhibitor); (e) 5/6Nx+NaHS+aminoguanidine (a selective inhibitor of inducible NOS [iNOS]). Twelve weeks after 5/6 Nx, we assessed the expressions of iNOS and endothelial NOS (eNOS), oxidative/antioxidant status, renal fibrosis, urine N-acetyl-b-glucosaminidase (NAG) activity as the markers of kidney injury and various markers of apoptosis, inflammation, remodeling, and autophagy. NaHS treatment protected the animals against chronic kidney injury as depicted by improved oxidative/antioxidant status, reduced apoptosis, and autophagy and attenuated messenger RNA (mRNA) expression of genes associated with inflammation, remodeling, and NAG activity. Eight weeks Nω-nitro-l-arginine methyl ester ( L -NAME) administration reduced the protective effects of hydrogen sulfide. In contrast, aminoguanidine augmented the beneficial effects of hydrogen sulfide. Our finding revealed some fascinating interactions between NO and H 2S in the kidney. Moreover, the study suggests that NO, in an isoform-dependent manner, can exert renoprotective effects in 5/6 Nx model of CKD. 相似文献
15.
Vieira PM Francisco AF de Souza SM Malaquias LC Reis AB Giunchetti RC Veloso VM de Lana M Tafuri WL Carneiro CM 《Experimental parasitology》2009,121(1):76-82
The participation of nitric oxide (NO) in the control of blood parasitemia and parasitism during the acute phase of infection in dogs inoculated with blood trypomastigotes (BT) or metacyclic trypomastigotes (MT group) of Berenice-78 Trypanosoma cruzi strain has been evaluated. Animals of the MT group (n = 4) presented increased levels of serum NO throughout the infection when compared with the BT (n = 4) or control (n = 4) groups, and a delay in parasitemia peak compared with the BT group. In spleen fragments, tissue parasitism was not observed but the MT group presented larger areas associated with inducible NO synthase (iNOS) in relation to BT and control groups. Heart fragments of MT-infected animals exhibited comparatively low tissue parasitism and high iNOS expression, while animals of the BT group presented high inflammatory infiltrate, high tissue parasitism and low iNOS expression. These results indicate that the source of inoculum can interfere with the development of the acute phase of Chagas disease, and may also trigger a distinct parasite-host interaction during this phase. 相似文献
16.
Nitric oxide (NO) has been identified as a fundamental molecule that interplays with reactive oxygen species (ROS) in determining cell fate. As a previous study indicated that ROS was stimulated in evodiamine-induced human melanoma A375-S2 cell apoptosis, the goal of this study was to investigate the role of NO in the cells. In this study, it was found that evodiamine has a strong inductive effect on NO production synthesized by inducible NOS (iNOS) enzyme in a positive-feedback manner. The generated NO was further showed to induce apoptosis and cell cycle arrest and linked to the activation of p53 and p21. After interruption of p38 and nuclear factor-κB (NF-κB) by pre-treatment with SB203580 and PDTC, iNOS expression, NO synthesis and cell damage were all significantly blocked. It was concluded that p38 and NF-κB were critical to the NO producing system, which contributed greatly to the apoptosis and cell cycle arrest in evodiamine-incubated cells. 相似文献
17.
Rachel L. Cox Thomas Mariano Diane E. Heck Jeffrey D. Laskin John J. Stegeman 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2001,130(4):275
The phylogenetic distribution and structural diversity of the nitric oxide synthases (NOS) remain important and issues that are little understood. We present sequence information, as well as phylogenetic analysis, for three NOS cDNAs identified in two non-mammalian species: the vertebrate marine teleost fish Stenotomus chrysops (scup) and the invertebrate echinoderm Arbacia punctulata (sea urchin). Partial gene sequences containing the well-conserved calmodulin (CaM)-binding domain were amplified by RT-PCR. Identical 375-bp cDNAs were amplified from scup brain, heart, liver and spleen; this sequence shares 82% nucleic acid and 91% predicted amino acid identity with the corresponding region of human neuronal NOS. A 387-bp cDNA was amplified from sea urchin ovary and testes; this sequence shares 72% nucleic acid identity and 65% deduced amino acid identity with human neuronal NOS. A second cDNA of 381 bp was amplified from sea urchin ovary and it shares 66% nucleic acid and 57% deduced amino acid identity with the first sea urchin sequence. Together with earlier reports of neuronal and inducible NOS sequences in fish, these data indicate that multiple NOS isoforms exist in non-mammalian species. Phylogenetic analysis of these sequences confirms the conserved nature of NOS, particularly of the calmodulin-binding domains. 相似文献
18.
Ching-Jen Wang Kunder D. Yang Jih-Yang Ko Chung-Cheng Huang Hsuan-Ying Huang Feng-Sheng Wang 《Nitric oxide》2009,20(4):298-303
This study investigated the effects of extracorporeal shockwave treatment (ESWT) on bone healing and the systemic concentrations of nitric oxide (NO), TGF-β1, VEGF and BMP-2 in long bone non-unions. Forty-two patients with 42 established non-unions of the femur and tibia were enrolled in this study. Each long bone non-union was treated with 6000 impulses of shockwave at 28 kV in a single session. Ten milliliters of peripheral blood were obtained for measurements of serum NO level and osteogenic growth factors including TGF-β1, VEGF and BMP-2; serum levels of calcium, alkaline phosphatase, calcitonin and parathyroid hormone before treatment and at 1 day, 1, 3 and 6 months after treatment. The evaluations for bone healing included clinical assessments and serial radiographic examinations. At 6 months, bony union was radiographically confirmed in 78.6%, and persistent non-union in 21.4%. Patients with bony union showed significantly higher serum NO level, TGF-β1, VEGF and BMP-2 at 1 month after treatment as compared to patients with persistent non-union. Shockwave-promoted bone healing was associated with significant increases in serum NO level and osteogenic growth factors. The elevations of systemic concentration of NO level and the osteogenic factors may reflect a local stimulation of shockwave in bone healing in long bone non-unions. 相似文献
19.
Anatoly F. Vanin Xiaoping Liu Alexandre Samouilov Reonald A. Stukan Jay L. Zweier 《Biochimica et Biophysica Acta (BBA)/General Subjects》2000,1474(3):365-377
While the Fe2+–dithiocarbamate complexes have been commonly used as NO traps to estimate NO production in biological systems, these complexes can undergo complex redox chemistry. Characterization of this redox chemistry is of critical importance for the use of this method as a quantitative assay of NO generation. We observe that the commonly used Fe2+ complexes of N-methyl-D-glucamine dithiocarbamate (MGD) or diethyldithiocarbamate (DETC) are rapidly oxidized under aerobic conditions to form Fe3+ complexes. Following exposure to NO, diamagnetic NO–Fe3+ complexes are formed as demonstrated by the optical, electron paramagnetic resonance and gamma-resonance spectroscopy, chemiluminescence and electrochemical methods. Under anaerobic conditions the aqueous NO–Fe3+–MGD and lipid soluble NO–Fe2+–DETC complexes gradually self transform by reductive nitrosylation into paramagnetic NO–Fe2+–MGD complexes with yield of up to 50% and the balance is converted to Fe3+–MGD and nitrite. In dimethylsulfoxide this process is greatly accelerated. More efficient transformation of NO–Fe3+–MGD into NO–Fe2+–MGD (60–90% levels) was observed after addition of reducing equivalents such as ascorbate, hydroquinone or cysteine or with addition of excess Fe2+–MGD. With isotope labeling of the NO–Fe3+–MGD with 57Fe, it was shown that these complexes donate NO to Fe2+–MGD. NO–Fe3+–MGD complexes were also formed by reversible oxidation of NO–Fe2+–MGD in air. The stability of NO–Fe3+–MGD and NO–Fe2+–MGD complexes increased with increasing the ratio of MGD to Fe. Thus, the iron–dithiocarbamate complexes and their NO derivatives exhibit complex redox chemistry that should be considered in their application for detection of NO in biological systems. 相似文献
20.
Earl W. Godfrey 《Experimental cell research》2010,316(12):1935-1945
Agrin released from motor nerve terminals directs differentiation of the vertebrate neuromuscular junction (NMJ). Activity of nitric oxide synthase (NOS), guanylate cyclase (GC), and cyclic GMP-dependent protein kinase (PKG) contributes to agrin signaling in embryonic frog and chick muscle cells. Stimulation of the NO/cyclic GMP (cGMP) pathway in embryos potentiates agrin's ability to aggregate acetylcholine receptors (AChRs) at NMJs. Here we investigated the timing and mechanism of NO and cGMP action. Agrin increased NO levels in mouse C2C12 myotubes. NO donors potentiated agrin-induced AChR aggregation during the first 20 min of agrin treatment, but overnight treatment with NO donors inhibited agrin activity. Adenoviruses encoding siRNAs against each of three NOS isoforms reduced agrin activity, indicating that these isoforms all contribute to agrin signaling. Inhibitors of NOS, GC, or PKG reduced agrin-induced AChR aggregation in mouse muscle cells by ∼ 50%. However, increased activation of the GTPase Rac1, an early step in agrin signaling, was dependent on NOS activity and was mimicked by NO donors and a cGMP analog. Our results indicate that stimulation of the NO/cGMP pathway is important during the first few minutes of agrin signaling and is required for agrin-induced Rac1 activation, a key step leading to reorganization of the actin cytoskeleton and subsequent aggregation of AChRs on the surface of skeletal muscle cells. 相似文献