首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Structural genomics meets computational biology   总被引:1,自引:0,他引:1  
A meeting recently organized by the NIH NIGMS Protein StructureInitiative (PSI, http://www.nigms.nih.gov/Initiatives/PSI) hasmade crystal clear the urgency and importance of the developmentof computational methods for the analysis of protein families,definition of protein domains and regions for expression, andannotation of protein function. No really new problems, butproblems made now even more important for the development ofthe Structural Genomics projects. PSI is now in the first year of  相似文献   

2.

Background  

The Midwest Center for Structural Genomics (MCSG) is one of the large-scale centres of the Protein Structure Initiative (PSI). During the first two phases of the PSI the MCSG has solved over a thousand protein structures. A criticism of structural genomics is that target selection strategies mean that some structures are solved without having a known function and thus are of little biomedical significance. Structures of unknown function have stimulated the development of methods for function prediction from structure.  相似文献   

3.
The Technology Portal of the Protein Structure Initiative Structural Biology Knowledgebase (PSI SBKB; http://technology.sbkb.org/portal/ ) is a web resource providing information about methods and tools that can be used to relieve bottlenecks in many areas of protein production and structural biology research. Several useful features are available on the web site, including multiple ways to search the database of over 250 technological advances, a link to videos of methods on YouTube, and access to a technology forum where scientists can connect, ask questions, get news, and develop collaborations. The Technology Portal is a component of the PSI SBKB ( http://sbkb.org ), which presents integrated genomic, structural, and functional information for all protein sequence targets selected by the Protein Structure Initiative. Created in collaboration with the Nature Publishing Group, the SBKB offers an array of resources for structural biologists, such as a research library, editorials about new research advances, a featured biological system each month, and a functional sleuth for searching protein structures of unknown function. An overview of the various features and examples of user searches highlight the information, tools, and avenues for scientific interaction available through the Technology Portal.  相似文献   

4.
This Perspective, arising from a workshop held in July 2008 in Buffalo NY, provides an overview of the role NMR has played in the United States Protein Structure Initiative (PSI), and a vision of how NMR will contribute to the forthcoming PSI-Biology program. NMR has contributed in key ways to structure production by the PSI, and new methods have been developed which are impacting the broader protein NMR community.  相似文献   

5.
Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for evolutionary related proteins. Thereby, experimental structure determination efforts and homology modeling complement each other in the exploration of the protein structure space. One of the challenges in using model information effectively has been to access all models available for a specific protein in heterogeneous formats at different sites using various incompatible accession code systems. Often, structure models for hundreds of proteins can be derived from a given experimentally determined structure, using a variety of established methods. This has been done by all of the PSI centers, and by various independent modeling groups. The goal of the Protein Model Portal (PMP) is to provide a single portal which gives access to the various models that can be leveraged from PSI targets and other experimental protein structures. A single interface allows all existing pre-computed models across these various sites to be queried simultaneously, and provides links to interactive services for template selection, target-template alignment, model building, and quality assessment. The current release of the portal consists of 7.6 million model structures provided by different partner resources (CSMP, JCSG, MCSG, NESG, NYSGXRC, JCMM, ModBase, SWISS-MODEL Repository). The PMP is available at and from the PSI Structural Genomics Knowledgebase.  相似文献   

6.
As the global Structural Genomics projects have picked up pace, the number of structures annotated in the Protein Data Bank as hypothetical protein or unknown function has grown significantly. A major challenge now involves the development of computational methods to assign functions to these proteins accurately and automatically. As part of the Midwest Center for Structural Genomics (MCSG) we have developed a fully automated functional analysis server, ProFunc, which performs a battery of analyses on a submitted structure. The analyses combine a number of sequence-based and structure-based methods to identify functional clues. After the first stage of the Protein Structure Initiative (PSI), we review the success of the pipeline and the importance of structure-based function prediction. As a dataset, we have chosen all structures solved by the MCSG during the 5 years of the first PSI. Our analysis suggests that two of the structure-based methods are particularly successful and provide examples of local similarity that is difficult to identify using current sequence-based methods. No one method is successful in all cases, so, through the use of a number of complementary sequence and structural approaches, the ProFunc server increases the chances that at least one method will find a significant hit that can help elucidate function. Manual assessment of the results is a time-consuming process and subject to individual interpretation and human error. We present a method based on the Gene Ontology (GO) schema using GO-slims that can allow the automated assessment of hits with a success rate approaching that of expert manual assessment.  相似文献   

7.
The ability of photosynthetic organisms to use the sun's light as a sole source of energy sustains life on our planet. Photosystems I (PSI) and II (PSII) are large, multi-subunit, pigment–protein complexes that enable photosynthesis, but this intriguing process remains to be explained fully. Currently, crystal structures of these complexes are available for thermophilic prokaryotic cyanobacteria. The mega-Dalton trimeric PSI complex from thermophilic cyanobacterium, Thermosynechococcus elongatus, was solved at 2.5?Å resolution with X-ray crystallography. That structure revealed the positions of 12 protein subunits (PsaA-F, PsaI-M, and PsaX) and 127 cofactors.Although mesophilic organisms perform most of the world's photosynthesis, no well-resolved trimeric structure of a mesophilic organism exists. Our research model for a mesophilic cyanobacterium was Synechocystis sp. PCC6803. This study aimed to obtain well-resolved crystal structures of [1] a monomeric PSI with all subunits, [2] a trimeric PSI with a reduced number of subunits, and [3] the full, trimeric wild-type PSI complex. We only partially succeeded with the first two structures, but we successfully produced the trimeric PSI structure at 2.5?Å resolution. This structure was comparable to that of the thermophilic species, but we provided more detail. The PSI trimeric supercomplex consisted of 33 protein subunits, 72 carotenoids, 285 chlorophyll a molecules, 51 lipids, 9 iron-sulfur clusters, 6 plastoquinones, 6 putative calcium ions, and over 870 water molecules.This study showed that the structure of the PSI in Synechocystis sp. PCC6803 differed from previously described PSI structures. These findings have broadened our understanding of PSI structure.  相似文献   

8.
《BBA》2023,1864(2):148945
Knowledge about the exact abundance and ratio of photosynthetic protein complexes in thylakoid membranes is central to understanding structure-function relationships in energy conversion. Recent modeling approaches for studying light harvesting and electron transport reactions rely on quantitative information on the constituent complexes in thylakoid membranes. Over the last decades several quantitative methods have been established and refined, enabling precise stoichiometric information on the five main energy-converting building blocks in the thylakoid membrane: Light-harvesting complex II (LHCII), Photosystem II (PSII), Photosystem I (PSI), cytochrome b6f complex (cyt b6f complex), and ATPase. This paper summarizes a few quantitative spectroscopic and biochemical methods that are currently available for quantification of plant thylakoid protein complexes. Two new methods are presented for quantification of LHCII and the cyt b6f complex, which agree well with established methods. In addition, recent improvements in mass spectrometry (MS) allow deeper compositional information on thylakoid membranes. The comparison between mass spectrometric and more classical protein quantification methods shows similar quantities of complexes, confirming the potential of thylakoid protein complex quantification by MS. The quantitative information on PSII, PSI, and LHCII reveal that about one third of LHCII must be associated with PSI for a balanced light energy absorption by the two photosystems.  相似文献   

9.
The dramatically increasing number of new protein sequences arising from genomics 4 proteomics requires the need for methods to rapidly and reliably infer the molecular and cellular functions of these proteins. One such approach, structural genomics, aims to delineate the total repertoire of protein folds in nature, thereby providing three-dimensional folding patterns for all proteins and to infer molecular functions of the proteins based on the combined information of structures and sequences. The goal of obtaining protein structures on a genomic scale has motivated the development of high throughput technologies and protocols for macromolecular structure determination that have begun to produce structures at a greater rate than previously possible. These new structures have revealed many unexpected functional inferences and evolutionary relationships that were hidden at the sequence level. Here, we present samples of structures determined at Berkeley Structural Genomics Center and collaborators laboratories to illustrate how structural information provides and complements sequence information to deduce the functional inferences of proteins with unknown molecular functions.Two of the major premises of structural genomics are to discover a complete repertoire of protein folds in nature and to find molecular functions of the proteins whose functions are not predicted from sequence comparison alone. To achieve these objectives on a genomic scale, new methods, protocols, and technologies need to be developed by multi-institutional collaborations worldwide. As part of this effort, the Protein Structure Initiative has been launched in the United States (PSI; www.nigms.nih.gov/funding/psi.html). Although infrastructure building and technology development are still the main focus of structural genomics programs [1–6], a considerable number of protein structures have already been produced, some of them coming directly out of semi-automated structure determination pipelines [6–10]. The Berkeley Structural Genomics Center (BSGC) has focused on the proteins of Mycoplasma or their homologues from other organisms as its structural genomics targets because of the minimal genome size of the Mycoplasmas as well as their relevance to human and animal pathogenicity (http://www.strgen.org). Here we present several protein examples encompassing a spectrum of functional inferences obtainable from their three-dimensional structures in five situations, where the inferences are new and testable, and are not predictable from protein sequence information alone.  相似文献   

10.
The stromal domain (PsaC, PsaD, and PsaE) of photosystem I (PSI) reduces transiently bound ferredoxin (Fd) or flavodoxin. Experimental structures exist for all of these protein partners individually, but no experimental structure of the PSI/Fd or PSI/flavodoxin complexes is presently available. Molecular models of Fd docked onto the stromal domain of the cyanobacterial PSI site are constructed here utilizing X‐ray and NMR structures of PSI and Fd, respectively. Predictions of potential protein‐protein interaction regions are based on experimental site‐directed mutagenesis and cross‐linking studies to guide rigid body docking calculations of Fd into PSI, complemented by energy landscape theory to bring together regions of high energetic frustration on each of the interacting proteins. The results identify two regions of high localized frustration on the surface of Fd that contain negatively charged Asp and Glu residues. This study predicts that these regions interact predominantly with regions of high localized frustration on the PsaC, PsaD, and PsaE chains of PSI, which include several residues predicted by previous experimental studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Structural GenomiX, Inc. (SGX), four New York area institutions, and two University of California schools have formed the New York Structural GenomiX Research Consortium (NYSGXRC), an industrial/academic Research Consortium that exploits individual core competencies to support all aspects of the NIH-NIGMS funded Protein Structure Initiative (PSI), including protein family classification and target selection, generation of protein for biophysical analyses, sample preparation for structural studies, structure determination and analyses, and dissemination of results. At the end of the PSI Pilot Study Phase (PSI-1), the NYSGXRC will be capable of producing 100–200 experimentally determined protein structures annually. All Consortium activities can be scaled to increase production capacity significantly during the Production Phase of the PSI (PSI-2). The Consortium utilizes both centralized and de-centralized production teams with clearly defined deliverables and hand-off procedures that are supported by a web-based target/sample tracking system (SGX Laboratory Information Data Management System, LIMS, and NYSGXRC Internal Consortium Experimental Database, ICE-DB). Consortium management is provided by an Executive Committee, which is composed of the PI and all Co-PIs. Progress to date is tracked on a publicly available Consortium web site (http://www.nysgxrc.org) and all DNA/protein reagents and experimental protocols are distributed freely from the New York City Area institutions. In addition to meeting the requirements of the Pilot Study Phase and preparing for the Production Phase of the PSI, the NYSGXRC aims to develop modular technologies that are transferable to structural biology laboratories in both academe and industry. The NYSGXRC PI and Co-PIs intend the PSI to have a transforming effect on the disciplines of X-ray crystallography and NMR spectroscopy of biological macromolecules. Working with other PSI-funded Centers, the NYSGXRC seeks to create the structural biology laboratory of the future. Herein, we present an overview of the organization of the NYSGXRC and describe progress toward development of a high-throughput Gene→Structure platform. An analysis of current and projected consortium metrics reflects progress to date and delineates opportunities for further technology development.  相似文献   

12.
Addition of NADP(+) to thylakoid membranes or isolated photosystem I (PSI) submembrane fractions quenched chlorophyll fluorescence by up to 40% at low or room temperature. This quenching was reversed by NADPH. Similar quenching was also observed with the addition of heparin or thenoyltrifluoroacetone (TTFA), inhibitors that bind ferredoxin:NADP(+) reductase (FNR) and prevent reduction of NADP(+). The NADP(+)-induced quenching coincided with a reversible conformational change of the secondary protein structure in the PSI submembrane fractions where 20% of the alpha-helix conformations were transformed mainly into beta-sheet-like structures. Further, P700 photooxidation was retarded due to this conformational change, and about 25% of the centers could not be photooxidized, these changes being also reversible with addition of NADPH. The above modifications in the presence of NADP(+) also increased photodamage processes under strong illumination, and NADPH protected it. Conformational modification of FNR upon binding of NADP(+) or NADPH is proposed to trigger the macromolecular changes in a larger part of the protein complex of PSI. The conformational changes must increase the intermolecular distances and change the mutual orientation between the various cofactors in the PSI complex. This new control mechanism of energy dissipation and photochemical activity by NADP(+)/NADPH is proposed to increase the turnover rate of PSI under conditions when both linear and cyclic electron transport activities must be supported.  相似文献   

13.
14.
Phosphacan is a chondroitin sulfate proteoglycan representing the secreted extracellular part of a transmembrane receptor protein tyrosine phosphatase (RPTP-). These isoforms have been implicated in cell-extracellular matrix signaling events associated with myelination, axon growth, and cell migration in the developing central nervous system and may play critical roles in the context of brain pathologies. Recently, we have reported the identification of a new isoform of phosphacan, the phosphacan short isoform (PSI), the expression of which peaks in the second postnatal week. PSI interacts with the neuronal receptors L1 and F3/contactin and can promote neurite growth of cortical neurons. In this study, we have assessed, by in situ hybridization, the expression profile of PSI in the rat brain at postnatal day 7. PSI is largely expressed in the gray matter of the developing cerebral cortex in which it colocalizes with phosphacan, whereas the expression of RPTPbeta receptor forms is restricted to the ventricular area in which PSI has not been observed. Neurons from all layers of the cortex express PSI. In the cerebellum, on the other hand, no expression of PSI has been detected, although the other phosphacan/RPTP-beta isoforms show strong PSI expression here. Overall, our study suggests that PSI is expressed during the postnatal period in differentiated neurons of the cortex but is absent from structures in which proliferation and migration occur. The significance of these observations is discussed in the context of previous models of phosphacan/RPTP-beta functions.The authors thank the German Research Council (DFG) for grant support (SFB 509 and SPP 1048 to A.F.) and for a graduate training grant to Alice Klausmeyer (GK 736).  相似文献   

15.
In this paper, we introduce multiscale persistent functions for biomolecular structure characterization. The essential idea is to combine our multiscale rigidity functions (MRFs) with persistent homology analysis, so as to construct a series of multiscale persistent functions, particularly multiscale persistent entropies, for structure characterization. To clarify the fundamental idea of our method, the multiscale persistent entropy (MPE) model is discussed in great detail. Mathematically, unlike the previous persistent entropy (Chintakunta et al. in Pattern Recognit 48(2):391–401, 2015; Merelli et al. in Entropy 17(10):6872–6892, 2015; Rucco et al. in: Proceedings of ECCS 2014, Springer, pp 117–128, 2016), a special resolution parameter is incorporated into our model. Various scales can be achieved by tuning its value. Physically, our MPE can be used in conformational entropy evaluation. More specifically, it is found that our method incorporates in it a natural classification scheme. This is achieved through a density filtration of an MRF built from angular distributions. To further validate our model, a systematical comparison with the traditional entropy evaluation model is done. It is found that our model is able to preserve the intrinsic topological features of biomolecular data much better than traditional approaches, particularly for resolutions in the intermediate range. Moreover, by comparing with traditional entropies from various grid sizes, bond angle-based methods and a persistent homology-based support vector machine method (Cang et al. in Mol Based Math Biol 3:140–162, 2015), we find that our MPE method gives the best results in terms of average true positive rate in a classic protein structure classification test. More interestingly, all-alpha and all-beta protein classes can be clearly separated from each other with zero error only in our model. Finally, a special protein structure index (PSI) is proposed, for the first time, to describe the “regularity” of protein structures. Basically, a protein structure is deemed as regular if it has a consistent and orderly configuration. Our PSI model is tested on a database of 110 proteins; we find that structures with larger portions of loops and intrinsically disorder regions are always associated with larger PSI, meaning an irregular configuration, while proteins with larger portions of secondary structures, i.e., alpha-helix or beta-sheet, have smaller PSI. Essentially, PSI can be used to describe the “regularity” information in any systems.  相似文献   

16.
According to the nucleated polymerization model, in vivo prion proliferation occurs via dissociation (shearing) of the huge prion polymers into smaller oligomeric 'seeds', initiating new rounds of prion replication. Here, we identify the deletion derivative of yeast prion protein Sup35 (Sup35-Delta22/69) that is specifically defective in aggregate shearing and 'seed' production. This derivative, [PSI+], previously thought to be unable to turn into a prion state, in fact retains the ability to form a prion ([PSI+](Delta22/69)) that can be maintained in selective conditions and transmitted by cytoplasmic infection (cytoduction), but which is mitotically unstable in non-selective conditions. MorePSI+](Delta22/69) retains its mitotic stability defect. The [PSI+](Delta22/69) cells contain more Sup35 protein in the insoluble fraction and form larger Sup35 aggregates compared with the conventional [PSI+] cells. Moderate excess of Hsp104 disaggregase increases transmission of the [PSI+](Delta22/69) prion, while excess Hsp70-Ssa chaperone antagonizes it, opposite to their effects on conventional [PSI+]. Our results shed light on the mechanisms determining the differences between transmissible prions and non-transmissible protein aggregates.  相似文献   

17.
Utschig LM  Chen LX  Poluektov OG 《Biochemistry》2008,47(12):3671-3676
Photosystem I (PSI) is a large membrane protein that catalyzes light-driven electron transfer across the thylakoid membrane from plastocyanin located in the lumen to ferredoxin in the stroma. Metal analysis reveals that PSI isolated from the cyanobacterial membranes of Synechococcus leopoliensishas a near-stoichiometric 1 molar equiv of Zn (2+) per PSI monomer and two additional surface metal ion sites that favor Cu (2+) binding. Two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy reveals coupling to the so-called remote nitrogen of a single histidine coordinated to one of the Cu (2+) centers. EPR and X-ray absorption fine structure (XAFS) studies of 2Cu-PSI complexes reveal the direct interaction of ferredoxin with the Cu (2+) centers on PSI, establishing the location of native metal sites on the ferredoxin docking side of PSI. On the basis of these spectroscopic results and previously reported site-directed mutagenesis studies, inspection of the PSI crystal structure reveals a cluster of three highly conserved residues, His(D95), Glu(D103), and Asp(C23), as a likely Cu (2+) binding site. The discovery of surface metal sites on the acceptor side of PSI provides a unique opportunity to probe the stromal region of PSI and the interactions of PSI with its reaction partner, the soluble electron carrier protein ferredoxin.  相似文献   

18.
The cytoplasmic [PSI+] determinant of Saccharomyces cerevisiae is the prion form of the Sup35 protein. Oligopeptide repeats within the Sup35 N-terminal domain (PrD) presumably are required for the stable [PSI+] inheritance that in turn involves fragmentation of Sup35 polymers by the chaperone Hsp104. The nonsense suppressor [PSI+] phenotype can vary in efficiency probably due to different inheritable Sup35 polymer structures. Here we study the ability of Sup35 mutants with various deletions of the oligopeptide repeats to support [PSI+] propagation. We define the minimal region of the Sup35-PrD necessary to support [PSI+] as amino acids 1-64, which include the first two repeats, although a longer fragment, 1-83, is required to maintain weak [PSI+] variants. Replacement of wild-type Sup35 with deletion mutants decreases the strength of the [PSI+] phenotype. However, with one exception, reintroducing the wild-type Sup35 restores the original phenotype. Thus, the specific prion fold defining the [PSI+] variant can be preserved by the mutant Sup35 protein despite the change of phenotype. Coexpression of wild-type and mutant Sup35 containing three, two, one, or no oligopeptide repeats causes variant-specific [PSI+] elimination. These data suggest that [PSI+] variability is primarily defined by differential folding of the Sup35-PrD oligopeptide-repeat region.  相似文献   

19.
We present the molecular structure of the IsiA-Photosystem I (PSI) supercomplex, inferred from high-resolution, crystal structures of PSI and the CP43 protein. The structure of iron-stress-induced A protein (IsiA) is similar to that of CP43, albeit with the difference that IsiA is associated with 15 chlorophylls (Chls), one more than previously assumed. The membrane-spanning helices of IsiA contain hydrophilic residues many of which bind Chl. The optimal structure of the IsiA-PSI supercomplex was inferred by systematically rearranging the IsiA monomers and PSI trimer in relation to each other. For each of the 6,969,600 structural configurations considered, we counted the number of optimal Chl-Chl connections (i.e., cases where Chl-bound Mg atoms are ≤ 25 Å apart). Fifty of these configurations were found to have optimal energy-transfer potential. The 50 configurations could be divided into three variants; one of these, comprising 36 similar configurations, was found to be superior to the other configurations in terms of its potential to transfer excitation energy to the reaction centres under low-light conditions and its potential to dissipate excess energy under high-light conditions. Compared to the assumed model [Biochemistry 42 (2003) 3180-3188], the new Chl increases by 7% the ability of IsiA to harvest sunlight while the rearrangement of the constituent components of the IsiA-PSI supercomplex increases by 228% the energy-transfer potential. In conclusion, our model allows us to explain how the IsiA-PSI supercomplex may act as an efficient light-harvesting structure under low-light conditions and as an efficient dissipater of excess energy under high-light conditions.  相似文献   

20.
Hung GC  Masison DC 《Genetics》2006,173(2):611-620
Hsp104 is a hexameric protein chaperone that resolubilizes stress-damaged proteins from aggregates. Hsp104 promotes [PSI(+)] prion propagation by breaking prion aggregates, which propagate as amyloid fibers, into more numerous prion "seeds." Inactivating Hsp104 cures cells of [PSI(+)] and other amyloid-like yeast prions. Overexpressing Hsp104 also eliminates [PSI(+)], presumably by completely resolubilizing prion aggregates. Inexplicably, however, excess Hsp104 does not cure the other prions. Here we identify missense mutations in Hsp104's amino-terminal domain (NTD), which is conserved among Hsp100 proteins but whose function is unknown, that improve [PSI(+)] propagation. Hsp104Delta147, engineered to lack the NTD, supported [PSI(+)] and functioned normally in thermotolerance and protein disaggregation. Hsp104Delta147 failed to cure [PSI(+)] when overexpressed, however, implying that excess Hsp104 does not eliminate [PSI(+)] by direct dissolution of prion aggregates. Curing of [PSI(+)] by overexpressing catalytically inactive Hsp104 (Hsp104KT), which interferes with endogenous Hsp104, did not require the NTD. We further found that Hsp104 mutants defective in threading peptides through the hexamer pore had reduced ability to support [PSI(+)] in proportion to protein resolubilization defects, suggesting that [PSI(+)] propagation depends on this threading and that Hsp104 "breaks" prion aggregates by extracting protein monomers from the amyloid fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号