首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many individuals chronically infected with human immunodeficiency virus type 1 (HIV-1) experience a recrudescence of plasma virus during continuous combination antiretroviral therapy (ART) due either to the emergence of drug-resistant viruses or to poor compliance. In most cases, virologic failure on ART is associated with a coincident decline in CD4(+) T lymphocyte levels. However, a proportion of discordant individuals retain a stable or even increasing CD4(+) T lymphocyte count despite virological failure. In order to address the nature of these different outcomes, we evaluated virologic and immunologic variables in a prospective, single-blinded, nonrandomized cohort of 53 subjects with chronic HIV-1 infection who had been treated with continuous ART and monitored intensively over a period of 19 months. In all individuals with detectable viremia on ART, multiple drug resistance mutations with similar impacts on viral growth kinetics were detected in the pol gene of circulating plasma virus. Further, C2V3 env gene analysis demonstrated sequences indicative of CCR5 coreceptor usage in the majority of those with detectable plasma viremia. In contrast to this homogeneous virologic pattern, comprehensive screening with a range of antigens derived from HIV-1 revealed substantial immunologic differences. Discordant subjects with stable CD4(+) T lymphocyte counts in the presence of recrudescent virus demonstrated potent virus-specific CD4(+) and CD8(+) T lymphocyte responses. In contrast, subjects with virologic failure associated with declining CD4(+) T lymphocyte counts had substantially weaker HIV-specific CD4(+) T lymphocyte responses and exhibited a trend towards weaker HIV-specific CD8(+) T lymphocyte responses. Importantly the CD4(+) response was sustained over periods as long as 11 months, confirming the stability of the phenomenon. These correlative data lead to the testable hypothesis that the consequences of viral recrudescence during continuous ART are modulated by the HIV-specific cellular immune response.  相似文献   

2.
Progressive human immunodeficiency virus type 1 (HIV-1) infection is often associated with high plasma virus load (pVL) and impaired CD8(+) T-cell function; in contrast, CD8(+) T cells remain polyfunctional in long-term nonprogressors. However, it is still unclear whether CD8(+) T-cell dysfunction is the cause or the consequence of high pVLs. Here, we conducted a longitudinal functional and phenotypic analysis of virus-specific CD8(+) T cells in a cohort of patients with chronic HIV-1 infection. During the initiation and maintenance of successful antiretroviral therapy (ART), we assessed whether the level of pVL was associated with the degree of CD8(+) T-cell dysfunction. Under viremic conditions, HIV-specific CD8(+) T cells were dysfunctional with respect to cytokine secretion (gamma interferon, interleukin-2 [IL-2], and tumor necrosis factor alpha), and their phenotype suggested limited potential for proliferation. During ART, cytokine secretion by HIV-specific CD8(+) T cells was gradually restored, IL-7Ralpha and CD28 expression increased dramatically, and PD-1 levels declined. Thus, prolonged ART-induced reduction of viral replication and, hence, presumably antigen exposure in vivo, allows a significant functional restoration of CD8(+) T cells with the appearance of polyfunctional cells. These findings indicate that the level of pVL as a surrogate for antigen load has a dominant influence on the phenotypic and functional profile of virus-specific CD8(+) T cells.  相似文献   

3.
Human immunodeficiency virus (HIV)-specific T-cell responses are thought to play a key role in viral load decline during primary infection and in determining the subsequent viral load set point. The requirements for this effect are unknown, partly because comprehensive analysis of total HIV-specific CD4(+) and CD8(+) T-cell responses to all HIV-encoded epitopes has not been accomplished. To assess these responses, we used cytokine flow cytometry and overlapping peptide pools encompassing all products of the HIV-1 genome to study total HIV-specific T-cell responses in 23 highly active antiretroviral therapy na?ve HIV-infected patients. HIV-specific CD8(+) T-cell responses were detectable in all patients, ranging between 1.6 and 18.4% of total CD8(+) T cells. HIV-specific CD4(+) T-cell responses were present in 21 of 23 patients, although the responses were lower (0.2 to 2.94%). Contrary to previous reports, a positive correlation was identified between the plasma viral load and the total HIV-, Env-, and Nef-specific CD8(+) T-cell frequency. No correlation was found either between viral load and total or Gag-specific CD4(+) T-cell response or between the frequency of HIV-specific CD4(+) and CD8(+) T cells. These results suggest that overall frequencies of HIV-specific T cells are not the sole determinant of immune-mediated protection in HIV-infection.  相似文献   

4.
The human immunodeficiency virus (HIV)-mediated immune response may be beneficial or harmful, depending on the balance between expansion of HIV-specific T cells and the level of generalized immune activation. The current study utilizes multicolor cytokine flow cytometry to study HIV-specific T cells and T-cell activation in 179 chronically infected individuals at various stages of HIV disease, including those with low-level viremia in the absence of therapy ("controllers"), low-level drug-resistant viremia in the presence of therapy (partial controllers on antiretroviral therapy [PCAT]), and high-level viremia ("noncontrollers"). Compared to noncontrollers, controllers exhibited higher frequencies of HIV-specific interleukin-2-positive gamma interferon-positive (IL-2(+) IFN-gamma(+)) CD4(+) T cells. The presence of HIV-specific CD4(+) IL-2(+) T cells was associated with low levels of proliferating T cells within the less-differentiated T-cell subpopulations (defined by CD45RA, CCR7, CD27, and CD28). Despite prior history of progressive disease, PCAT patients exhibited many immunologic characteristics seen in controllers, including high frequencies of IL-2(+) IFN-gamma(+) CD4(+) T cells. Measures of immune activation were lower in all CD8(+) T-cell subsets in controllers and PCAT compared to noncontrollers. Thus, control of HIV replication is associated with high levels of HIV-specific IL-2(+) and IFN-gamma(+) CD4(+) T cells and low levels of T-cell activation. This immunologic state is one where the host responds to HIV by expanding but not exhausting HIV-specific T cells while maintaining a relatively quiescent immune system. Despite a history of advanced HIV disease, a subset of individuals with multidrug-resistant HIV exhibit an immunologic profile comparable to that of controllers, suggesting that functional immunity can be reconstituted with partially suppressive highly active antiretroviral therapy.  相似文献   

5.
We measured the longitudinal responses to 95 HLA class I-restricted human immunodeficiency virus (HIV) epitopes and an immunodominant HLA A2-restricted cytomegalovirus (CMV) epitope in eight treatment-naive HIV-infected individuals, using intracellular cytokine staining. Patients were treated with highly active antiretroviral therapy (HAART) for a median of 78 weeks (range, 34 to 121 weeks). Seven of eight patients maintained an undetectable viral load for the duration of therapy. A rapid decline in HIV-specific CD8(+) T-cell response was observed at initiation of therapy. After an undetectable viral load was achieved, a slower decrease in HIV-specific CD8(+) T-cell response was observed that was well described by first-order kinetics. The median half-life for the rate of decay was 38.8 (20.3 to 68.0) weeks when data were expressed as percentage of peripheral CD8(+) T cells. In most cases, data were similar when expressed as the number of responding CD8(+) T cells per microliter of blood. In subjects who responded to more than one HIV epitope, rates of decline in response to the different epitopes were similar and varied by a factor of 2.2 or less. Discontinuation of treatment resulted in a rapid increase in HIV-specific CD8(+) T cells. Responses to CMV increased 1.6- and 2.8-fold within 16 weeks of initiation of HAART in two of three patients with a measurable CMV response. These data suggest that HAART quickly starts to restore CD8(+) T-cell responses to other chronic viral infections and leads to a slow decrease in HIV-specific CD8(+) T-cell response in HIV-infected patients. The slow decrease in the rate of CD8(+) T-cell response and rapid increase in response to recurrent viral replication suggest that the decrease in CD8(+) T-cell response observed represents a normal memory response to withdrawal of antigen.  相似文献   

6.
A novel technology combining replication- and integration-defective human immunodeficiency virus type 1 (HIV-1) vectors with genetically modified dendritic cells was developed in order to induce T-cell immunity. We introduced the vector into dendritic cells as a plasmid DNA using polyethylenimine as the gene delivery system, thereby circumventing the problem of obtaining viral vector expression in the absence of integration. Genetically modified dendritic cells (GMDC) presented viral epitopes efficiently, secreted interleukin 12, and primed both CD4(+) and CD8(+) HIV-specific T cells capable of producing gamma interferon and exerting potent HIV-1-specific cytotoxicity in vitro. In nonhuman primates, subcutaneously injected GMDC migrated into the draining lymph node at an unprecedentedly high rate and expressed the plasmid DNA. The animals presented a vigorous HIV-specific effector cytotoxic-T-lymphocyte (CTL) response as early as 3 weeks after a single immunization, which later developed into a memory CTL response. Interestingly, antibodies did not accompany these CTL responses, indicating that GMDC can induce a pure Th1 type of immune response. Successful induction of a broad and long-lasting HIV-specific cellular immunity is expected to control virus replication in infected individuals.  相似文献   

7.
Gut-associated lymphoid tissue (GALT) is a significant but understudied lymphoid organ, harboring a majority of the body's total lymphocyte population. GALT is also an important portal of entry for human immunodeficiency virus (HIV), a major site of viral replication and CD4(+) T-cell depletion, and a frequent site of AIDS-related opportunistic infections and neoplasms. However, little is known about HIV-specific cell-mediated immune responses in GALT. Using lymphocytes isolated from rectal biopsies, we have determined the frequency and phenotype of HIV-specific CD8(+) T cells in human GALT. GALT CD8(+) T cells were predominantly CD45RO(+) and expressed CXCR4 and CCR5. In 10 clinically stable, chronically infected individuals, the frequency of HIV Gag (SL9)-specific CD8(+) T cells was increased in GALT relative to peripheral blood mononuclear cells by up to 4.6-fold, while that of cytomegalovirus (CMV)-specific CD8(+) T cells was significantly reduced (P = 0.012). Both HIV- and CMV-specific CD8(+) T cells in GALT expressed CCR5, but only HIV-specific CD8(+) T cells expressed alpha E beta 7 integrin, suggesting that mucosal priming may account for their retention in GALT. Chronically infected individuals exhibited striking depletion of GALT CD4(+) T cells expressing CXCR4, CCR5, and alpha E beta 7 integrin, but CD4(+)/CD8(+) T-cell ratios in blood and GALT were similar. The percentage of GALT CD8(+) T cells expressing alpha E beta 7 was significantly decreased in infected individuals, suggesting that HIV infection may perturb lymphocyte retention in GALT. These studies demonstrate the feasibility of using tetramers to assess HIV-specific T cells in GALT and reveal that GALT is the site of an active CD8(+) T-cell response during chronic infection.  相似文献   

8.
Recent studies of human immunodeficiency virus (HIV)-specific CD8(+) T cells have focused on responses to single, usually HLA-A2-restricted epitopes as surrogate measures of the overall response to HIV. However, the assumption that a response to one epitope is representative of the total response is unconfirmed. Here we assess epitope immunodominance and HIV-specific CD8(+) T-cell response complexity using cytokine flow cytometry to examine CD8(+) T-cell responses in 11 HLA-A2(+) HIV(+) individuals. Initial studies demonstrated that only 4 of 11 patients recognized the putative immunodominant HLA-A2-restricted p17 epitope SLYNTVATL, suggesting that the remaining subjects might lack significant HIV-specific CD8(+) T-cell responses. However, five of six SLYNTVATL nonresponders recognized other HIV epitopes, and two of four SLYNTVATL responders had greater responses to HIV peptides restricted by other class I alleles. In several individuals, no HLA-A2-restricted epitopes were recognized, but CD8(+) T-cell responses were detected to epitopes restricted by other HLA class I alleles. These data indicate that an individual's overall CD8(+) T-cell response to HIV is not adequately represented by the response to a single epitope and that individual major histocompatibility complex class I alleles do not predict an immunodominant response restricted by that allele. Accurate quantification of total HIV-specific CD8(+) T-cell responses will require assessment of the response to all possible epitopes.  相似文献   

9.
After initiation of antiretroviral therapy (ART), HIV loads and frequencies of HIV epitope-specific immune responses decrease. A diverse virus-specific T cell receptor (TCR) repertoire allows the host to respond to viral epitope diversity, but the effect of antigen reduction as a result of ART on the TCR repertoire of epitope-specific CD8(+) T cell populations has not been well defined. We determined the TCR repertoires of 14 HIV-specific CD8(+) T cell responses from 8 HIV-positive individuals before and after initiation of ART. We used multiparameter flow cytometry to measure the distribution of memory T cell subsets and the surface expression of PD-1 on T cell populations and T cell clonotypes within epitope-specific responses from these individuals. Post-ART, we noted decreases in the frequency of circulating epitope-specific T cells (P = 0.02), decreases in the number of T-cell clonotypes found within epitope-specific T cell receptor repertoires (P = 0.024), and an overall reduction in the amino acid diversity within these responses (P < 0.0001). Despite this narrowing of the T cell response to HIV, the overall hierarchy of dominant T cell receptor clonotypes remained stable compared to that pre-ART. CD8(+) T cells underwent redistributions in memory phenotypes and a reduction in CD38 and PD-1 expression post-ART. Despite extensive remodeling at the structural and phenotypic levels, PD-1 was expressed at higher levels on dominant clonotypes within epitope-specific responses before and after initiation of ART. These data suggest that the antigen burden may maintain TCR diversity and that dominant clonotypes are sensitive to antigen even after dramatic reductions after initiation of ART.  相似文献   

10.
CD4(+) T-cell help is essential for effective immune responses to viruses. In human immunodeficiency virus (HIV) infection, CD4(+) T cells specific for HIV are infected by the virus at higher frequencies than other memory CD4(+) T cells. Here, we demonstrate that HIV-specific CD4(+) T cells are barely detectable in most infected individuals and that the corresponding CD4(+) T cells exhibit an immature phenotype compared to both cytomegalovirus (CMV)-specific CD4(+) T cells and other memory CD4(+) T cells. However, in two individuals, we observed a rare and diametrically opposed pattern in which HIV-specific CD4(+) T-cell populations of large magnitude exhibited a terminally differentiated immunophenotype; these cells were not preferentially infected in vivo. Clonotypic analysis revealed that the HIV-specific CD4(+) T cells from these individuals were cross-reactive with CMV. Thus, preferential infection can be circumvented in the presence of cross-reactive CD4(+) T cells driven to maturity by coinfecting viral antigens, and this physical proximity rather than activation status per se is an important determinant of preferential infection based on antigen specificity. These data demonstrate that preferential infection reduces the life span of HIV-specific CD4(+) T cells in vivo and thereby compromises the generation of effective immune responses to the virus itself; further, this central feature in the pathophysiology of HIV infection can be influenced by the cross-reactivity of responding CD4(+) T cells.  相似文献   

11.
A rare subset of human immunodeficiency virus (HIV)-infected individuals maintains undetectable HIV RNA levels without therapy ("elite controllers"). To clarify the role of T-cell responses in mediating virus control, we compared HLA class I polymorphisms and HIV-specific T-cell responses among a large cohort of elite controllers (HIV-RNA < 75 copies/ml), "viremic" controllers (low-level viremia without therapy), "noncontrollers" (high-level viremia), and "antiretroviral therapy suppressed" individuals (undetectable HIV-RNA levels on antiretroviral therapy). The proportion of CD4(+) and CD8(+) T cells that produce gamma interferon (IFN-gamma) and interleukin-2 (IL-2) in response to Gag and Pol peptides was highest in the elite and viremic controllers (P < 0.0001). Forty percent of the elite controllers were HLA-B*57 compared to twenty-three percent of viremic controllers and nine percent of noncontrollers (P < 0.001). Other HLA class I alleles more common in elite controllers included HLA-B*13, HLA-B*58, and HLA-B*81 (P < 0.05 for each). Within elite and viremic controller groups, those with protective class I alleles had higher frequencies of Gag-specific CD8(+) T cells than those without these alleles (P = 0.01). Noncontrollers, with or without protective alleles, had low-level CD8(+) responses. Thus, certain HLA class I alleles are enriched in HIV controllers and are associated with strong Gag-specific CD8(+)IFN-gamma(+)IL-2(+) T cells. However, the absence of evidence of T cell-mediated control in many controllers suggests the presence of alternative mechanisms for viral control in these individuals. Defining mechanisms for virus control in "non-T-cell controllers" might lead to insights into preventing HIV transmission or preventing virus replication.  相似文献   

12.
The engagement of programmed death 1 (PD-1) to its ligands, PD-L1 and PD-L2, inhibits proliferation and cytokine production mediated by antibodies to CD3 (refs. 5,6,7). Blocking the PD-1-PD-L1 pathway in mice chronically infected with lymphocytic choriomeningitis virus restores the capacity of exhausted CD8(+) T cells to undergo proliferation, cytokine production and cytotoxic activity and, consequently, results in reduced viral load. During chronic HIV infection, HIV-specific CD8(+) T cells are functionally impaired, showing a reduced capacity to produce cytokines and effector molecules as well as an impaired capacity to proliferate. Here, we found that PD-1 was upregulated on HIV-specific CD8(+) T cells; PD-1 expression levels were significantly correlated both with viral load and with the reduced capacity for cytokine production and proliferation of HIV-specific CD8(+) T cells. Notably, cytomegalovirus (CMV)-specific CD8(+) T cells from the same donors did not upregulate PD-1 and maintained the production of high levels of cytokines. Blocking PD-1 engagement to its ligand (PD-L1) enhanced the capacity of HIV-specific CD8(+) T cells to survive and proliferate and led to an increased production of cytokines and cytotoxic molecules in response to cognate antigen. The accumulation of HIV-specific dysfunctional CD8(+) T cells in the infected host could prevent the renewal of a functionally competent HIV-specific CD8(+) repertoire.  相似文献   

13.
The virus-specific CD8+ T cell responses of 21 HIV-infected patients were studied including a unique cohort of long-term nonprogressors with low levels of plasma viral RNA and strong proliferative responses to HIV Ags. HIV-specific CD8+ T cell responses were studied by a combination of standard cytotoxic T cell (CTL) assays, MHC tetramers, and TCR repertoire analysis. The frequencies of CD8+ T cells specific to the majority of HIV gene products were measured by flow cytometric detection of intracellular IFN-gamma in response to HIV-vaccinia recombinant-infected autologous B cells. Very high frequencies (0.8-18.0%) of circulating CD8+ T cells were found to be HIV specific. High frequencies of HIV-specific CD8+ T cells were not limited to long-term nonprogressors with restriction of plasma virus. No correlation was found between the frequency of HIV-specific CD8+ T cells and levels of plasma viremia. In each case, the vast majority of cells (up to 17.2%) responded to gag-pol. Repertoire analysis showed these large numbers of Ag-specific cells were scattered throughout the repertoire and in the majority of cases not contained within large monoclonal expansions. These data demonstrate that high numbers of HIV-specific CD8+ T cells exist even in patients with high-level viremia and progressive disease. Further, they suggest that other qualitative parameters of the CD8+ T cell response may differentiate some patients with very low levels of plasma virus and nonprogressive disease.  相似文献   

14.
To better understand the qualitative features of effective human immunodeficiency virus (HIV)-specific immunity, we examined the TCR clonal composition of CD8(+) T cells recognizing conserved HIV p24-derived epitopes in HLA-B*5701-positive long-term nonprogressors/elite controllers (LTNP/EC) and HLA-matched progressors. Both groups displayed oligoclonal HLA-B5701-restricted p24-specific CD8(+) T-cell responses with similar levels of diversity and few public clonotypes. Thus, HIV-specific CD8(+) T-cell responses in LTNP/EC are not differentiated from those of progressors on the basis of clonal diversity or TCR sharing.  相似文献   

15.
Although human immunodeficiency virus (HIV)-infected subjects without AIDS have a high frequency of HIV-specific CD8 T lymphocytes, cellular immunity is unable to control infection. Freshly isolated lymphocytes often do not lyse HIV-infected targets in 4-h cytotoxicity assays. A large fraction of circulating CD8 T cells from HIV-infected donors down-modulate CD3zeta, the signaling component of the T-cell receptor complex, which is reexpressed in vitro coincident with the return of cytotoxic function. To investigate further the link between CD3zeta down-modulation and possible CD8 T-cell functional defects, we used flow cytometry to characterize further the properties of the CD3zeta-down-modulated subset. HIV-specific CD8 T cells, identified by tetramer staining, are CD3zeta(-). CD8 T cells with down-modulated CD3zeta also do not express the key costimulatory receptor CD28 and have the cell surface phenotype of activated or memory T cells (HLA-DR(+) CD62L(-)). After T-cell activation, CD3zeta-down-modulated cells express the activation marker CD69 but not the high-affinity interleukin 2 (IL-2) receptor alpha-chain CD25 and produce gamma interferon but not IL-2. Therefore HIV-specific CD8 T cells have down-modulated key signaling molecules for T-cell activation and costimulation and require exogenous cytokine stimulation. The typical impairment of HIV-specific CD4 T helper cells, which would normally provide specific CD8 T-cell stimulation, means that in vivo CTL function in vivo is compromised in most HIV-infected individuals. In AIDS patients, the functional defect is more severe, since CD3zeta is not reexpressed even after IL-2 exposure.  相似文献   

16.
Candidate human immunodeficiency virus type 1 (HIV-1) vaccines designed to elicit T-cell immunity in HIV-1-uninfected persons are under investigation in phase I to III clinical trials. Little is known about how these vaccines impact the immunologic response postinfection in persons who break through despite vaccination. Here, we describe the first comprehensive characterization of HIV-specific T-cell immunity in vaccine study participants following breakthrough HIV-1 infection in comparison to 16 nonvaccinated subjects with primary HIV-1 infection. Whereas none of the 16 breakthrough infections possessed vaccine-induced HIV-1-specific T-cell responses preinfection, 85% of vaccinees and 86% of nonvaccinees with primary HIV-1 infection developed HIV-specific T-cell responses postinfection. Breakthrough subjects' T cells recognized 43 unique HIV-1 T-cell epitopes, of which 8 are newly described, and 25% were present in the vaccine. The frequencies of gamma interferon (IFN-gamma)-secreting cells recognizing epitopes within gene products that were and were not encoded by the vaccine were not different (P = 0.64), which suggests that responses were not anamnestic. Epitopes within Nef and Gag proteins were the most commonly recognized in both vaccinated and nonvaccinated infected subjects. One individual controlled viral replication without antiretroviral therapy and, notably, mounted a novel HIV-specific HLA-C14-restricted Gag LYNTVATL-specific T-cell response. Longitudinally, HIV-specific T cells in this individual were able to secrete IFN-gamma and tumor necrosis factor alpha, as well as proliferate and degranulate in response to their cognate antigenic peptides up to 5 years postinfection. In conclusion, a vaccinee's ability to mount an HIV-specific T-cell response postinfection is not compromised by previous immunization, since the CD8+ T-cell responses postinfection are similar to those seen in vaccine-na?ve individuals. Finding an individual who is controlling infection highlights the importance of comprehensive studies of breakthrough infections in vaccine trials to determine whether host genetics/immune responses and/or viral characteristics are responsible for controlling viral replication.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) infection triggers a cytotoxic T-lymphocyte (CTL) response mediated by CD8(+) and perhaps CD4(+) CTLs. The mechanisms by which HIV-1 escapes from this CTL response are only beginning to be understood. However, it is already clear that the extreme genetic variability of the virus is a major contributing factor. Because of the well-known ability of altered peptide ligands (APL) to induce a T-cell receptor (TCR)-mediated anergic state in CD4(+) helper T cells, we investigated the effects of HIV-1 sequence variations on the proliferation and cytotoxic activation of a human CD4(+) CTL clone (Een217) specific for an epitope composed of amino acids 410 to 429 of HIV-1 gp120. We report that a natural variant of this epitope induced a functional anergic state rendering the T cells unable to respond to their antigenic ligand and preventing the proliferation and cytotoxic activation normally induced by the original antigenic peptide. Furthermore, the stimulation of Een217 cells with this APL generated altered TCR-proximal signaling events that have been associated with the induction of T-cell anergy in CD4(+) T cells. Importantly, the APL-induced anergic state of the Een217 T cells could be prevented by the addition of interleukin 2, which restored their ability to respond to their nominal antigen. Our data therefore suggest that HIV-1 variants can induce a state of anergy in HIV-specific CD4(+) CTLs. Such a mechanism may allow a viral variant to not only escape the CTL response but also facilitate the persistence of other viral strains that may otherwise be recognized and eliminated by HIV-specific CTLs.  相似文献   

18.
Virus-specific CD4(+) T-cell function is thought to play a central role in induction and maintenance of effective CD8(+) T-cell responses in experimental animals or humans. However, the reasons that diminished proliferation of human immunodeficiency virus (HIV)-specific CD4(+) T cells is observed in the majority of infected patients and the role of these diminished responses in the loss of control of replication during the chronic phase of HIV infection remain incompletely understood. In a cohort of 15 patients that were selected for particularly strong HIV-specific CD4(+) T-cell responses, the effects of viremia on these responses were explored. Restriction of HIV replication was not observed during one to eight interruptions of antiretroviral therapy in the majority of patients (12 of 15). In each case, proliferative responses to HIV antigens were rapidly inhibited during viremia. The frequencies of cells that produce IFN-gamma in response to Gag, Pol, and Nef peptide pools were maintained during an interruption of therapy. In a subset of patients with elevated frequencies of interleukin-2 (IL-2)-producing cells, IL-2 production in response to HIV antigens was diminished during viremia. Addition of exogenous IL-2 was sufficient to rescue in vitro proliferation of DR0101 class II Gag or Pol tetramer(+) or total-Gag-specific CD4(+) T cells. These observations suggest that, during viremia, diminished in vitro proliferation of HIV-specific CD4(+) T cells is likely related to diminished IL-2 production. These results also suggest that relatively high frequencies of HIV-specific CD4(+) T cells persist in the peripheral blood during viremia, are not replicatively senescent, and proliferate when IL-2 is provided exogenously.  相似文献   

19.
CD8(+) T cells are believed to play an important role in the control of human immunodeficiency virus type 1 (HIV-1) infection. However, despite intensive efforts, it has not been possible to consistently link the overall magnitude of the CD8(+) T-cell response with control of HIV-1. Here, we have investigated the association of different CD8(+) memory T-cell subsets responding to HIV-1 in early infection with future control of HIV-1 viremia. Our results demonstrate that both a larger proportion and an absolute number of HIV-1-specific CD8(+) CCR7(-) CD45RA(+) effector memory T cells (T(EMRA) cells) were associated with a lower future viral load set point. In contrast, a larger absolute number of HIV-1-specific CD8(+) CCR7(-) CD45RA(-) effector memory T cells (T(EM)) was not related to the viral load set point. Overall, the findings suggest that CD8(+) T(EMRA) cells have superior antiviral activity and indicate that both qualitative and quantitative aspects of the CD8(+) T-cell response need to be considered when defining the characteristics of protective immunity to HIV-1.  相似文献   

20.
The importance of HLA class I-restricted CD8 T-cell responses in the control of human immunodeficiency virus (HIV) infection is generally accepted. While several studies have shown an association of certain HLA class I alleles with slower disease progression, it is not fully established whether this effect is mediated by HIV-specific CD8 T-cell responses restricted by these alleles. In order to study the influence of the HLA class I alleles on the HIV-specific CD8 T-cell response and on viral control, we have assessed HIV-specific epitope recognition, plasma viral load, and expression of HLA class I alleles in a cohort of HIV-seropositive bar workers. Possession of the HLA class I alleles B5801, B8101, and B0702 was associated with a low median viral load and simultaneously with a broader median recognition of Gag epitopes compared to all other HLA alleles (twofold increase) (P = 0.0035). We further found an inverse linear relationship between the number of Gag epitopes recognized and the plasma viral load (R = -0.36; P = 0.0016). Particularly, recognition of multiple epitopes within two regions of Gag (amino acids [aa] 1 to 75 and aa 248 to 500) was associated with the maintenance of a low steady-state viremia, even years after acute infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号