首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 285 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Elastase is a proteolytic enzyme belonging to the family of hydrolases produced by human neutrophils, monocytes, macrophages, and endothelial cells. Human neutrophil elastase is known to play multiple roles in the human body, but an increase in its activity may cause a variety of diseases. Elastase inhibitors may prevent the development of psoriasis, chronic kidney disease, respiratory disorders (including COVID-19), immune disorders, and even cancers. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in herbal plants, have been revealed to influence elastase release and its action on human cells. This review focuses on elastase inhibitors that have been discovered from natural sources and are biochemically characterised as flavonoids. The inhibitory activity on elastase is a characteristic of flavonoid aglycones and their glycoside and methylated, acetylated and hydroxylated derivatives. The presented analysis of structure–activity relationship (SAR) enables the determination of the chemical groups responsible for evoking an inhibitory effect on elastase. Further study especially of the in vivo efficacy and safety of the described natural compounds is of interest in order to gain better understanding of their health-promoting potential.  相似文献   

13.
14.
Pteridine reductase is a promising target for development of novel therapeutic agents against Trypanosomatid parasites. A 3D-QSAR pharmacophore hypothesis has been generated for a series of L. major pteridine reductase inhibitors using Catalyst/HypoGen algorithm for identification of the chemical features that are responsible for the inhibitory activity. Four pharmacophore features, namely: two H-bond donors (D), one Hydrophobic aromatic (H) and one Ring aromatic (R) have been identified as key features involved in inhibitor-PTR1 interaction. These features are able to predict the activity of external test set of pteridine reductase inhibitors with a correlation coefficient (r) of 0.80. Based on the analysis of the best hypotheses, some potent Pteridine reductase inhibitors were screened out and predicted with anti-PTR1 activity. It turned out that the newly identified inhibitory molecules are at least 300 fold more potent than the current crop of existing inhibitors. Overall the current SAR study is an effort for elucidating quantitative structure-activity relationship for the PTR1 inhibitors. The results from the combined 3D-QSAR modeling and molecular docking approach have led to the prediction of new potent inhibitory scaffolds.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号