首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Selective inhibition of hepatitis B virus replication by RNA interference   总被引:43,自引:0,他引:43  
Small interfering RNA (siRNA) is a powerful tool to silence gene expression in mammalian cells including genes of viral origin. To evaluate the therapeutic efficacy of siRNA against the hepatitis B virus (HBV), we studied the effect of transfection of the HBV-inducible cell lines HepAD38 and HepAD79 with siRNA specific for the core gene of the HBV genome. HepAD38 cells produce wild-type HBV, whereas HepAD79 cells produce the lamivudine resistant YMDD variant. Transfection of HepAD38 cells with either 1.6 or 4 microg/ml siRNA resulted in a profound inhibition (72% and 98%, respectively) of viral replication (as assessed by real-time quantitative PCR). The inhibitory effect was corroborated by a marked reduction of HBV core protein synthesis in induced HepAD38 cells. In HepAD79 cells, transfected with 1.6 or 4 microg/ml HBV-specific siRNA, virus production was reduced by 75% and 89%, respectively.  相似文献   

4.
5.
6.
Short interfering RNA-directed inhibition of hepatitis B virus replication   总被引:48,自引:0,他引:48  
RNA interference (RNAi) is the process by which double-stranded RNA directs sequence-specific degradation of mRNA. In mammalian cells, RNAi can be triggered by 21-nucleotide duplexes of short interfering RNA (siRNA). We examined effects of siRNA on hepatitis B virus (HBV) replication. Human hepatoma cells were transfected with HBV DNA and siRNA against HBV-pregenome RNA. Transfection experiments demonstrated that the siRNA reduced the amount of HBV-pregenome RNA and resulted in reduction of the levels of replicative intermediates and viral protein. Our results indicate that siRNA-mediated gene silencing inhibits HBV replication through suppression of viral RNA, which may be useful as a potential therapeutic modality.  相似文献   

7.
RNA interference might be an efficient antiviral therapy for some obstinate illness. Here, we studied the effects of hepatitis B virus (HBV)-specific 21-nt small interfering RNAs (siRNA) on HBV gene expression and replication in 2.2.15 cells. Seven vectors expressing specific hairpin siRNA driven by the RNA polymerase II-promoter were constructed and transfected into 2.2.15 cells. In the cell strain that can stably express functional siRNA, the HBV surface antigen (HBsAg) and the HBV e antigen (HBeAg) secretion into culture media was inhibited by 86% and 91%, respectively, as shown by an enzyme-linked immunosorbent assay. Immunofluorescence and Western blot indicated similar results. HBV DNA was markedly restrained by 3.28-fold, as assessed by the fluorescent quantitation PCR. Moreover, the HBV mRNA was significantly reduced by 80% based on semiquantitative RT-PCR. In conclusion, the specific siRNA can knock down the HBV gene expression and replication in vitro, and the silence effects have no relationship with interferon response.  相似文献   

8.
We have demonstrated previously that the core protein of hepatitis C virus (HCV) exhibits suppression activity on gene expression and replication of hepatitis B virus (HBV). Here we further elucidated the suppression mechanism of HCV core protein. We demonstrated that HCV core protein retained the inhibitory effect on HBV gene expression and replication when expressed as part of the full length of HCV polyprotein. Based on the substitution mutational analysis, our results suggested that mutation introduced into the bipartite nuclear localization signal of the HCV core protein resulted in the cytoplasmic localization of core protein but did not affect its suppression ability on HBV gene expression. Mutational studies also indicated that almost all dibasic residue mutations within the N-terminal 101-amino acid segment of the HCV core protein (except Arg(39)-Arg(40)) impaired the suppression activity on HBV replication but not HBV gene expression. The integrity of Arg residues at positions 101, 113, 114, and 115 was found to be essential for both suppressive effects, whereas the Arg residue at position 104 was important only in the suppression of HBV gene expression. Moreover, our results indicated that the suppression on HBV gene expression was mediated through the direct interaction of HCV core protein with the trans-activator HBx protein, whereas the suppression of HBV replication involved the complex formation between HBV polymerase (pol) and the HCV core protein, resulting in the structural incompetence for the HBV pol to bind the package signal and consequently abolished the formation of the HBV virion. Altogether, this study suggests that these two suppression effects on HBV elicited by the HCV core protein likely depend on different structural context but not on nuclear localization of the core protein, and the two effects can be decoupled as revealed by its differential targets (HBx or HBV pol) on these two processes of the HBV life cycle.  相似文献   

9.
10.
11.
目的 研究髓样细胞分化蛋白(MyD88)抗乙型肝炎病毒(HBV)效应的作用机制。方法 构建MyD88的截短突变体,获得核因子kappa B(NF-κB)超抑制剂IkBa-SR或者NF-κB信号通路激活剂IKKα/IKKβ的表达质粒,分别与HBV复制型质粒瞬时转染Huh7细胞,检测细胞上清液中HBeAg,HBsAg的表达以及胞质中HBV复制中间体DNA的含量,并以NF-κB依赖的荧光素酶报道系统检测它们活化NF-κB的程度。结果 MyD88全长蛋白和2个截短突变体M(1-151)、M(151-296)活化NF-κB的程度与其抑制HBV蛋白以及复制中间体DNA合成的能力相一致。与空载相比,表达NF-κB信号通路激活剂IKKα/IKKβ的质粒共同瞬转细胞后,转染MyD88和HBV表达质粒的细胞中NF-κB的通路明显活化,同时HBV core蛋白的合成显著降低;而NF-κB的超抑制剂IκBα-SR共同瞬转的细胞中core蛋白的表达量显著增加,检测细胞培养上清液中HBeAg和HBsAg及胞质中HBV复制中间体DNA的合成,得到相似结果。结论 NF-κB信号通路的活化在MyD88抑制HBV复制中发挥了关键作用  相似文献   

12.
Several synthetic siRNAs were designed to target various regions of hepatitis C virus (HCV) replicon RNA. The antiviral efficacies of the siRNAs were compared using real time PCR and western blot assessment. siRNAs targeting either specific coding region of HCV NS3 or NS5B were the most efficacious in terms of gene silencing and inhibitory activity of the HCV replicon replication. There was no activation of genes involved in innate immune response by the HCV-specific siRNA, indicating that HCV replication inhibition was not due to non-specific antiviral response. Moreover, 5′-RACE PCR analysis showed that the silencing effect by the siRNAs was mainly caused by specific cleavage of targeted HCV genomic RNA. These findings suggest that RNAi targeting HCV coding regions could provide a useful approach to anti-HCV treatment.  相似文献   

13.
In our previous paper, we reported that myeloid differential primary response protein (MyD88), a key adaptor in the signaling cascade of the innate immune response, inhibits hepatitis B virus (HBV) replication. The MyD88 activated nuclear factor-kappaB (NF-kappaB) signaling pathway and the intracellular upregulation of NF-kappaB signaling can induce an antiviral effect. Therefore, the association between the inhibition of HBV replication by MyD88 and NF-kappaB activation was investigated further. The results show that NF-kappaB activation was moderately increased after MyD88 expression. The strong activation of NF-kappaB by the IkappaB kinase complex IKKalpha/IKKbeta dramatically suppressed HBV replication; the MyD88 dominant negative mutant that abrogated NF-kappaB activity did not inhibit HBV replication. Furthermore, the IkappaBalpha dominant negative mutant restored the inhibition of HBV replication by MyD88. These results support a role for NF-kappaB activation in the inhibition of HBV replication and suggest a novel mechanism for the inhibition of HBV replication by MyD88 protein.  相似文献   

14.
Persistent infection with hepatitis C virus (HCV) is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. It has recently been shown that HCV RNA replication is susceptible to small interfering RNAs (siRNAs), but the antiviral activity of siRNAs depends very much on their complementarity to the target sequence. Thus, the high degree of sequence diversity between different HCV genotypes and the rapid evolution of new quasispecies is a major problem in the development of siRNA-based gene therapies. For this study, we developed two alternative strategies to overcome these obstacles. In one approach, we used endoribonuclease-prepared siRNAs (esiRNAs) to simultaneously target multiple sites of the viral genome. We show that esiRNAs directed against various regions of the HCV coding sequence as well as the 5' nontranslated region (5' NTR) efficiently block the replication of subgenomic and genomic HCV replicons. In an alternative approach, we generated pseudotyped retroviruses encoding short hairpin RNAs (shRNAs). A total of 12 shRNAs, most of them targeting highly conserved sequence motifs within the 5' NTR or the early core coding region, were analyzed for their antiviral activities. After the transduction of Huh-7 cells containing a subgenomic HCV replicon, we found that all shRNAs targeting sequences in domain IV or nearby coding sequences blocked viral replication. In contrast, only one of seven shRNAs targeting sequences in domain II or III had a similar degree of antiviral activity, indicating that large sections of the NTRs are resistant to RNA interference. Moreover, we show that naive Huh-7 cells that stably expressed certain 5' NTR-specific shRNAs were largely resistant to a challenge with HCV replicons. These results demonstrate that the retroviral transduction of HCV-specific shRNAs provides a new possibility for antiviral intervention.  相似文献   

15.
16.
Specific inhibition of hepatitis C virus replication by cyclosporin A   总被引:13,自引:0,他引:13  
The difficulty in eradicating hepatitis C virus (HCV) infection is attributable to the limited treatment options against the virus. Recently, cyclosporin A (CsA), a widely used immunosuppressive drug, has been reported to be effective against HCV infection [J. Gastroenterol. 38 (2003) 567], although little is understood about the mechanism of its action against HCV. In this study, we investigated the anti-viral effects of CsA using an HCV replicon system. Human hepatoma Huh7 cells were transfected with an HCV replicon expressing a chimeric gene encoding a luciferase reporter and neomycin phosphotransferase (Huh7/Rep-Feo). Treatment of the Huh7/Rep-Feo cells with CsA resulted in suppression of the replication of the HCV replicon in a dose-dependent manner, with an IC50 of approximately 0.5 microg/ml. There were no changes in the rate of cell growth or viability, suggesting that the effect of CsA against HCV is specific and not due to cytotoxicity. In contrast, FK506, another immunosuppressive drug, did not suppress HCV replication. CsA did not activate interferon-stimulated gene responses, suggesting that its action is independent of that of interferon. In conclusion, CsA inhibits HCV replication in vitro specifically at clinical concentrations. Further defining its mode of action against HCV replication potentially may be important for identifying novel molecular targets to treat HCV infection.  相似文献   

17.
18.
Mixed background SHP(-/-) mice are resistant to diet-induced obesity due to increased energy expenditure caused by enhanced PGC-1α expression in brown adipocytes. However, congenic SHP(-/-) mice on the C57BL/6 background showed normal expression of PGC-1α and other genes involved in brown adipose tissue thermogenesis. Thus, we reinvestigated the impact of small heterodimer partner (SHP) deletion on diet-induced obesity and insulin resistance using congenic SHP(-/-) mice. Compared with their C57BL/6 wild-type counterparts, SHP(-/-) mice subjected to a 6 month challenge with a Western diet (WestD) were leaner but more glucose intolerant, showed hepatic insulin resistance despite decreased triglyceride accumulation and increased β-oxidation, exhibited alterations in peripheral tissue uptake of dietary lipids, maintained a higher respiratory quotient, which did not decrease even after WestD feeding, and displayed islet dysfunction. Hepatic mRNA expression analysis revealed that many genes expressed higher in SHP(-/-) mice fed WestD were direct peroxisome proliferator-activated receptor alpha (PPARα) targets. Indeed, transient transfection and chromatin immunoprecipitation verified that SHP strongly repressed PPARα-mediated transactivation. SHP is a pivotal metabolic sensor controlling lipid homeostasis in response to an energy-laden diet through regulating PPARα-mediated transactivation. The resultant hepatic fatty acid oxidation enhancement and dietary fat redistribution protect the mice from diet-induced obesity and hepatic steatosis but accelerate development of type 2 diabetes.  相似文献   

19.
Interferons (IFNs) play a major role in the control of hepatitis B virus (HBV), whether as endogenous cytokines limiting the spread of the virus during the acute phase of the infection or as drugs for the treatment of its chronic phase. However, the mechanism by which IFNs inhibit HBV replication has so far remained elusive. Here, we show that type I and II IFN treatment of human hepatocytes induces the production of APOBEC3G (A3G) and, to a lesser extent, that of APOBEC3F (A3F) and APOBEC3B (A3B) but not that of two other cytidine deaminases also endowed with anti-HBV activity, activation-induced cytidine deaminase (AID), and APOBEC1. Most importantly, we reveal that blocking A3B, A3F, and A3G by combining RNA interference and the virion infectivity factor (Vif) protein of human immunodeficiency virus does not abrogate the inhibitory effect of IFNs on HBV. We conclude that these cytidine deaminases are not essential effectors of IFN in its action against this pathogen.  相似文献   

20.
Interference of hepatitis A virus replication by small interfering RNAs   总被引:5,自引:0,他引:5  
The rate of acute liver failure due to hepatitis A virus (HAV) has not decreased, and therapy of severe infections is still of major interest. Using a DNA-based HAV replicon cell culture system, we demonstrate that small interfering RNAs (siRNAs) targeted against viral sequences or a reporter gene contained in the viral genome specifically inhibit HAV RNA replication in HuhT7 cells. Combinations of siRNAs were more effective suppressors of HAV RNA replication. Also, siRNAs targeted against HAV 2C and 3D inhibited the expression of the respective protein. Expressions of endogenous beta-actin and double-stranded-specific RNA-activated serin/threonine kinase (PKR) were unaltered, demonstrating that the siRNA inhibitory effect was not connected to interferon inhibition, but rather was specifically targeted against HAV RNA. These results suggest that RNA interference might ultimately be useful in treatment of severe HAV infection with or without chronic liver diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号