首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we demonstrate that multiple tetraspanin (transmembrane 4 superfamily) proteins are palmitoylated, in either the Golgi or a post-Golgi compartment. Using CD151 as a model tetraspanin, we identified and mutated intracellular N-terminal and C-terminal cysteine palmitoylation sites. Simultaneous mutations of C11, C15, C242, and C243 (each to serine) eliminated >90% of CD151 palmitoylation. Notably, palmitoylation had minimal influence on the density of tetraspanin protein complexes, did not promote tetraspanin localization into detergent-resistant microdomains, and was not required for CD151-alpha 3 beta 1 integrin association. However, the CD151 tetra mutant showed markedly diminished associations with other cell surface proteins, including other transmembrane 4 superfamily proteins (CD9, CD63). Thus, palmitoylation may be critical for assembly of the large network of cell surface tetraspanin-protein interactions, sometimes called the "tetraspanin web." Also, compared with wild-type CD151, the tetra mutant was much more diffusely distributed and showed markedly diminished stability during biosynthesis. Finally, expression of the tetra-CD151 mutant profoundly altered alpha 3 integrin-deficient kidney epithelial cells, such that they converted from a dispersed, elongated morphology to an epithelium-like cobblestone clustering. These results point to novel biochemical and biological functions for tetraspanin palmitoylation.  相似文献   

2.
Transmembrane proteins of the tetraspanin superfamily are assembled in multimeric complexes on the cell surface. Spatial orientation of tetraspanins within these complexes may affect signaling functions of the associated transmembrane receptors (e.g. integrins, receptor-type tyrosine kinases). The structural determinants that control assembly of the tetraspanin complexes are unknown. We have found that various tetraspanins and the alpha(3) integrin subunit are palmitoylated. The stability and molecular composition of the palmitoylated alpha(3)beta(1)-tetraspanin complexes are not affected by adhesion. To assess the significance of palmitoylation in the function of the alpha(3)beta(1)-tetraspanin complexes we mapped the sites of palmitoylation for CD151. Mutation of six cysteines, Cys(11), Cys(15), Cys(79), Cys(80), Cys(242), and Cys(243) was necessary to completely abolish palmitoylation of CD151. The association of the palmitoylation-deficient mutant of CD151 (CD151Cys8) with CD81 and CD63 was markedly decreased, but the interaction of the alpha(3)beta(1)-CD151Cys8 complex with phosphatidylinositol 4-kinase was not affected. Ectopic expression of CD151Cys8 in Rat-1 cells impaired the interactions of the endogenous CD63 and CD81 with the alpha(3)beta(1) integrin. Although the expression of the palmitoylation-deficient CD151 does not change cell spreading on the extracellular matrix, the number of focal adhesions increased. Adhesion-induced phosphorylation of PKB/c-Akt is markedly increased in cells expressing a palmitoylation-deficient mutant, thereby providing direct evidence for the role of the tetraspanin microdomains in regulation of the integrin-dependent phosphatidylinositol 3-kinase signaling pathway. In contrast, activation of FAK and ERK1/2 were not affected by the expression of CD151Cys8. Our results demonstrate that palmitoylation of tetraspanins is critical not only for the organization of the integrin-tetraspanin microdomains but also has a specific role in modulation of adhesion-dependent signaling.  相似文献   

3.
Transmembrane proteins of the tetraspanin superfamily are associated with various integrins and modulate their function. We performed mutagenesis analysis to establish structural requirements for the interaction of CD151 with the alpha3beta1 integrin and with other tetraspanins. Using a panel of CD151/CD9 chimeras and CD151 deletion mutants we show that the minimal region, which confers stable (e.g. Triton X-100-resistant) association of the tetraspanin with alpha3beta1, maps within the large extracellular loop (LECL) of CD151 (the amino acid sequence between residues Leu(149) and Glu(213)). Furthermore, the substitution of 11 amino acids (residues 195-205) from this region for a corresponding sequence from CD9 LECL or point mutations of cysteines in the conserved CCG and PXXCC motifs abolish the interaction. The removal of the LECL CD151 does not affect the association of the protein with other tetraspanins (e.g. CD9, CD81, CD63, and wild-type CD151). On the other hand, the mutation of the CCG motif selectively prevents the homotypic CD151-CD151 interaction but does not influence the association of the mutagenized CD151 with other tetraspanins. These results demonstrate the differences in structural requirements for the heterotypic and homotypic tetraspanin-tetraspanin interactions. Various deletions involving the small extracellular loop and the first three transmembrane domains prevent surface expression of the CD151 mutants but do not affect the CD151-alpha3beta1 interaction. The CD151 deletion mutants are accumulated in the endoplasmic reticulum and redirected to the lysosomes. The assembly of the CD151-alpha3beta1 complex occurs early during the integrin biosynthesis and precedes the interaction of CD151 with other tetraspanins. Collectively, these data show that the incorporation of CD151 into the "tetraspanin web" can be controlled at various levels by different regions of the protein.  相似文献   

4.
The tetraspanin CD151 forms a stoichiometric complex with integrin alpha3beta1 and regulates its endocytosis. We observed that down-regulation of CD151 in various epithelial cell lines changed glycosylation of alpha3beta1. In contrast, glycosylation of other transmembrane proteins, including those associated with CD151 (e.g. alpha6beta1, CD82, CD63, and emmprin/CD147) was not affected. The detailed analysis has shown that depletion of CD151 resulted in the reduction of Fucalpha1-2Gal and bisecting GlcNAc-beta(1-->4) linkage on N-glycans of the alpha3 integrin subunit. The modulatory activity of CD151 toward alpha3beta1 was specific, because stable knockdown of three other tetraspanins (i.e. CD9, CD63, and CD81) did not affect glycosylation of the integrin. Analysis of alpha3 glycosylation in CD151-depleted breast cancer cells with reconstituted expression of various CD151 mutants has shown that a direct contact with integrin is required but not sufficient for the modulatory activity of the tetraspanin toward alpha3beta1. We also found that glycosylation of CD151 is also critical; Asn(159) --> Gln mutation in the large extracellular loop did not affect interactions of CD151 with other tetraspanins or alpha3beta1 but negated its modulatory function. Changes in the glycosylation pattern of alpha3beta1 observed in CD151-depleted cells correlated with a dramatic decrease in cell migration toward laminin-332. Migration toward fibronectin or static adhesion of cells to extracellular matrix ligands was not affected. Importantly, reconstituted expression of the wild-type CD151 but not glycosylation-deficient mutant restored the migratory potential of the cells. These results demonstrate that CD151 plays an important role in post-translation modification of alpha3beta1 integrin and strongly suggest that changes in integrin glycosylation are critical for the promigratory activity of this tetraspanin.  相似文献   

5.
As observed previously, tetraspanin palmitoylation promotes tetraspanin microdomain assembly. Here, we show that palmitoylated integrins (alpha3, alpha6, and beta4 subunits) and tetraspanins (CD9, CD81, and CD63) coexist in substantially overlapping complexes. Removal of beta4 palmitoylation sites markedly impaired cell spreading and signaling through p130Cas on laminin substrate. Also in palmitoylation-deficient beta4, secondary associations with tetraspanins (CD9, CD81, and CD63) were diminished and cell surface CD9 clustering was decreased, whereas core alpha6beta4-CD151 complex formation was unaltered. There is also a functional connection between CD9 and beta4 integrins, as evidenced by anti-CD9 antibody effects on beta4-dependent cell spreading. Notably, beta4 palmitoylation neither increased localization into "light membrane" fractions of sucrose gradients nor decreased solubility in nonionic detergents-hence it does not promote lipid raft association. Instead, palmitoylation of beta4 (and of the closely associated tetraspanin CD151) promotes CD151-alpha6beta4 incorporation into a network of secondary tetraspanin interactions (with CD9, CD81, CD63, etc.), which provides a novel framework for functional regulation.  相似文献   

6.
CD9, a tetraspanin protein, makes crucial contributions to sperm egg fusion, other cellular fusions, epidermal growth factor receptor signaling, cell motility, and tumor suppression. Here we characterize a low affinity anti-CD9 antibody, C9BB, which binds preferentially to homoclustered CD9. Using mAb C9BB as a tool, we show that cell surface CD9 homoclustering is promoted by expression of alpha3beta1 and alpha6beta4 integrins and by palmitoylation of the CD9 and beta4 proteins. Conversely, CD9 is shifted toward heteroclusters upon expression of CD9 partner proteins (EWI-2 and EWI-F) or other tetraspanins, or upon ablation of CD9 palmitoylation. Furthermore, unpalmitoylated CD9 showed enhanced EWI-2 association, thereby demonstrating a previously unappreciated role for tetraspanin palmitoylation, and underscoring how depalmitoylation and EWI-2 association may collaborate to shift CD9 from homo- to heteroclusters. In conclusion, we have used a novel molecular probe (mAb C9BB) to demonstrate the existence of multiple types of CD9 complex on the cell surface. A shift from homo- to heteroclustered CD9 may be functionally significant because the latter was especially obvious on malignant epithelial tumor cells. Hence, because of its specialized properties, C9BB may be more useful than other anti-CD9 antibodies for monitoring CD9 during tumor progression.  相似文献   

7.
Tetraspanins serve as molecular organizers of multiprotein microdomains in cell membranes. Hence to understand functions of tetraspanin proteins, it is critical to identify laterally interacting partner proteins. Here we used a novel technical approach involving exposure and cross-linking of membrane-proximal cysteines coupled with LC-MS/MS protein identification. In this manner we identified nine potential tetraspanin CD9 partners, including claudin-1. Chemical cross-linking yielded a CD9-claudin-1 heterodimer, thus confirming direct association and adding claudin-1 to the short list of proteins that can directly associate with CD9. Interaction of CD9 (and other tetraspanins) with claudin-1 was supported by subcellular colocalization and was confirmed in multiple cell lines, although other claudins (claudin-2, -3, -4, -5, and -7) associated to a much lesser extent. Moreover claudin-1 was distributed very similarly to CD9 in sucrose gradients and, like CD9, was released from A431 and A549 cells upon cholesterol depletion. These biochemical features of claudin-1 are characteristic of tetraspanin microdomain proteins. Although claudins are major structural components of intercellular tight junctions, CD9-claudin-1 complexes did not reside in tight junctions, and depletion of key tetraspanins (CD9 and CD151) by small interfering RNA had no effect on paracellular permeability. However, tetraspanin depletion did cause a marked decrease in the stability of newly synthesized claudin-1. In conclusion, these results (a) validate a technical approach that appears to be particularly well suited for identifying protein partners directly associated with tetraspanins or with other proteins that contain membrane-proximal cysteines and (b) provide insight into how non-junctional claudins may be regulated in the context of tetraspanin-enriched microdomains.  相似文献   

8.
CD81 is a tetraspanin protein that is involved in several essential cellular functions, as well as in the hepatitis C virus (HCV) infection. CD81 interacts with a high stoichiometry with its partner proteins EWI-2, EWI-2wint, and EWI-F. These latter proteins modify the functions of CD81 and can thereby potentially inhibit infection or modulate cell migration. Here, we characterized the cleavage of EWI-2 leading to the production of EWI-2wint, which has been shown to inhibit HCV infection. We determined the regions of EWI-2/EWI-2wint and CD81 that are important for their interaction and their functionality. More precisely, we identified a glycine zipper motif in the transmembrane domain of EWI-2/EWI-2wint that is essential for the interaction with CD81. In addition, we found that palmitoylation on two juxtamembranous cysteines in the cytosolic tail of EWI-2/EWI-2wint is required for their interaction with CD81 as well as with CD9, another tetraspanin. Thus, we have shown that palmitoylation of a tetraspanin partner protein can influence the interaction with a tetraspanin. We therefore propose that palmitoylation not only of tetraspanins, but also of their partner proteins is important in regulating the composition of complexes in tetraspanin networks. Finally, we identified the regions in CD81 that are necessary for its functionality in HCV entry and we demonstrated that EWI-2wint needs to interact with CD81 to exert its inhibitory effect on HCV infection.  相似文献   

9.
Palmitoylation of tetraspanins affects protein-protein interactions, suggesting a key role in the assembly of the tetraspanin web. Since palmitoylation occurs on intracellular cysteine residues, we examined whether mutating these residues in the human tetraspanin CD81 would affect the association of CD81 with other surface membrane proteins. Mutation of at least six of the eight juxtamembrane cysteines was required to completely eliminate detectable CD81 palmitoylation, indicating that several sites can be palmitoylated. Interestingly, these mutated proteins exhibited reduced cell surface detection by antibody compared to wild-type CD81, but this was not due to differences in the level of protein expression, trafficking to the cell surface, protein stability, or anti-CD81 antibody binding affinity. Instead, the mutant CD81 proteins appeared to be partially hidden from detection by anti-CD81 antibody, presumably due to altered interactions with other proteins at the cell surface. Associations with the known CD81-interacting proteins CD9 and EWI-2 were also impaired with the mutant CD81 proteins. Taken together, these findings indicate that mutation of juxtamembrane cysteines alters the interaction of CD81 with other proteins, either because of reduced palmitoylation, structural alterations in the mutant proteins, or a combination of both factors, and this affects the CD81 microenvironment on the cell surface.  相似文献   

10.
Human papillomavirus type 16 (HPV16) is the primary etiologic agent for cervical cancer. The infectious entry of HPV16 into cells occurs via a so-far poorly characterized clathrin- and caveolin-independent endocytic pathway, which involves tetraspanin proteins and actin. In this study, we investigated the specific role of the tetraspanin CD151 in the early steps of HPV16 infection. We show that surface-bound HPV16 moves together with CD151 within the plane of the membrane before they cointernalize into endosomes. Depletion of endogenous CD151 did not affect binding of viral particles to cells but resulted in reduction of HPV16 endocytosis. HPV16 uptake is dependent on the C-terminal cytoplasmic region of CD151 but does not require its tyrosine-based sorting motif. Reexpression of the wild-type CD151 but not mutants affecting integrin functions restored virus internalization in CD151-depleted cells. Accordingly, short interfering RNA (siRNA) gene knockdown experiments confirmed that CD151-associated integrins (i.e., α3β1 and α6β1/4) are involved in HPV16 infection. Furthermore, palmitoylation-deficient CD151 did not support HPV16 cell entry. These data show that complex formation of CD151 with laminin-binding integrins and integration of the complex into tetraspanin-enriched microdomains are critical for HPV16 endocytosis.  相似文献   

11.
CD151, a transmembrane protein of the tetraspanin family, is implicated in the regulation of cell-substrate adhesion and cell migration through physical and functional interactions with integrin receptors. In contrast, little is known about the potential role of CD151 in controlling cell proliferation and survival. We have previously shown that β4 integrin, a major CD151 partner, not only acts as an adhesive receptor for laminins but also as an intracellular signaling platform promoting cell proliferation and invasive growth upon interaction with Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF). Here we show that RNAi-mediated silencing of CD151 expression in cancer cells impairs HGF-driven proliferation, anchorage-independent growth, protection from anoikis, and tumor progression in xenograft models in vivo. Mechanistically, we found that CD151 is crucially implicated in the formation of signaling complexes between Met and β4 integrin, a known amplifier of HGF-induced tumor cell growth and survival. CD151 depletion hampered HGF-induced phosphorylation of β4 integrin and the ensuing Grb2-Gab1 association, a signaling pathway leading to MAPK stimulation and cell growth. Accordingly, CD151 knockdown reduced HGF-triggered activation of MAPK but not AKT signaling cascade. These results indicate that CD151 controls Met-dependent neoplastic growth by enhancing receptor signaling through β4 integrin-mediated pathways, independent of cell-substrate adhesion.  相似文献   

12.
Covalent lipid modifications mediate the membrane attachment and biological activity of Ras proteins. All Ras isoforms are farnesylated and carboxyl-methylated at the terminal cysteine; H-Ras and N-Ras are further modified by palmitoylation. Yeast Ras is palmitoylated by the DHHC cysteine-rich domain-containing protein Erf2 in a complex with Erf4. Here we report that H- and N-Ras are palmitoylated by a human protein palmitoyltransferase encoded by the ZDHHC9 and GCP16 genes. DHHC9 is an integral membrane protein that contains a DHHC cysteine-rich domain. GCP16 encodes a Golgi-localized membrane protein that has limited sequence similarity to yeast Erf4. DHHC9 and GCP16 co-distribute in the Golgi apparatus, a location consistent with the site of mammalian Ras palmitoylation in vivo. Like yeast Erf2.Erf4, DHHC9 and GCP16 form a protein complex, and DHHC9 requires GCP16 for protein fatty acyltransferase activity and protein stability. Purified DHHC9.GCP16 exhibits substrate specificity, palmitoylating H- and N-Ras but not myristoylated G (alphai1) or GAP-43, proteins with N-terminal palmitoylation motifs. Hence, DHHC9.GCP16 displays the properties of a functional human ortholog of the yeast Ras palmitoyltransferase.  相似文献   

13.
ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-alpha6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-alpha6 mAb, or by mAbs against either the alphav or beta3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other beta1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg beta1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface "tetraspan web" facilitates fertilization and that it may do so by fostering ADAM-integrin interactions.  相似文献   

14.
Previously we established that the alpha(3)beta(1) integrin shows stable, specific, and stoichiometric association with the TM4SF (tetraspannin) protein CD151. Here we used a membrane impermeable cross-linking agent to show a direct association between extracellular domains of alpha(3)beta(1) and CD151. The alpha(3)beta(1)-CD151 association site was then mapped using chimeric alpha(6)/alpha(3) integrins and CD151/NAG2 TM4SF proteins. Complex formation required an extracellular alpha(3) site (amino acids (aa) 570-705) not previously known to be involved in specific integrin contacts with other proteins and a region (aa 186-217) within the large extracellular loop of CD151. Notably, the anti-CD151 monoclonal antibody TS151r binding epitope, previously implicated in alpha(3) integrin association, was mapped to the same region of CD151 (aa 186-217). Finally, we demonstrated that both NH(2)- and COOH-terminal domains of CD151 are located on the inside of the plasma membrane, thus confirming a long suspected model of TM4SF protein topology.  相似文献   

15.
The alpha 3 beta 1 integrin shows strong, stoichiometric, direct lateral association with the tetraspanin CD151. As shown here, an extracellular CD151 site (QRD(194-196)) is required for strong (i.e., Triton X-100-resistant) alpha 3 beta 1 association and for maintenance of a key CD151 epitope (defined by monoclonal antibody TS151r) that is blocked upon alpha 3 integrin association. Strong CD151 association with integrin alpha 6 beta 1 also required the QRD(194-196) site and masked the TS151r epitope. For both alpha 3 and alpha 6 integrins, strong QRD/TS151r-dependent CD151 association occurred early in biosynthesis and involved alpha subunit precursor forms. In contrast, weaker associations of CD151 with itself, integrins, or other tetraspanins (Triton X-100-sensitive but Brij 96-resistant) were independent of the QRD/TS151r site, occurred late in biosynthesis, and involved mature integrin subunits. Presence of the CD151-QRD(194-196)-->INF mutant disrupted alpha 3 and alpha 6 integrin-dependent formation of a network of cellular cables by Cos7 or NIH3T3 cells on basement membrane Matrigel and markedly altered cell spreading. These results provide definitive evidence that strong lateral CD151-integrin association is functionally important, identify CD151 as a key player during alpha 3 and alpha 6 integrin-dependent matrix remodeling and cell spreading, and support a model of CD151 as a transmembrane linker between extracellular integrin domains and intracellular cytoskeleton/signaling molecules.  相似文献   

16.
The basement membrane protein laminin-332 (laminin-5) mediates both stable cell adhesion and rapid cell migration and thus has the potential to either restrain or promote tumor cell metastasis. The major cellular receptors for laminin-332 are integrin α3β1, which mediates rapid tumor cell migration, and integrin α6β4, which often mediates stable cell attachment. Tetraspanin protein CD151 interacts directly with both α3β1 and α6β4 integrins and with other tetraspanins, thereby promoting α3β1 and α6β4 association with tetraspanin-enriched microdomains on the cell surface. To explore the possibility of selectively modulating tumor cell responses to laminin-332, we re-expressed a series of CD151 mutants in epidermoid carcinoma cells with near total, RNAi-mediated silencing of endogenous CD151. The interactions of CD151 with its integrin partners or its interactions with other tetraspanins were selectively disrupted by specific mutations in the CD151 large extracellular loop (EC2 domain) or in intracellular CD151 palmitoylation sites, respectively. CD151-integrin association and CD151-tetraspanin association were both important for α3β1 integrin-dependent initial adhesion and rapid migration on laminin-332. Remarkably, however, only CD151-integrin association was required for stable, α6β4 integrin-dependent cell attachment on laminin-332. In addition, we found that a QRD amino acid motif in the CD151 EC2 domain, which had been thought to be crucial for CD151-integrin interaction, is not essential for CD151-integrin association or for the ability of CD151 to promote several different integrin functions. These new data suggest potential strategies for selectively modulating migratory cell responses to laminin-332, while leaving stable cell attachment on laminin-332 intact.  相似文献   

17.
Devbhandari RP  Shi GM  Ke AW  Wu FZ  Huang XY  Wang XY  Shi YH  Ding ZB  Xu Y  Dai Z  Fan J  Zhou J 《PloS one》2011,6(9):e24901
Tetraspanin CD151 has been implicated in metastasis through forming complexes with different molecular partners. In this study, we mapped tetraspanin web proteins centered on CD151, in order to explore the role of CD151 complexes in the progression of hepatocellular carcinoma (HCC). Immunoprecipitation was used to isolate tetraspanin complexes from HCCLM3 cells using a CD151 antibody, and associated proteins were identified by mass spectrometry. The interaction of CD151 and its molecular partners, and their roles in invasiveness and metastasis of HCC cells were assayed through disruption of the CD151 network. Finally, the clinical implication of CD151 complexes in HCC patients was also examined. In this study, we identified 58 proteins, characterized the tetraspanin CD151 web, and chose integrin β1 as a main partner to further investigate. When the CD151/integrin β1 complex in HCC cells was disrupted, migration, invasiveness, secretion of matrix metalloproteinase 9, and metastasis were markedly influenced. However, both CD151 and integrin β1 expression were untouched. HCC patients with high expression of CD151/integrin β1 complex had the poorest prognosis of the whole cohort of patients. Together, our data show that CD151 acts as an important player in the progression of HCC in an integrin β1-dependent manner.  相似文献   

18.
CD81 and CD9, members of the transmembrane-4 superfamily (TM4SF; tetraspanins), form extensive complexes with other TM4SF proteins, integrins, and other proteins, especially in mild detergents. In moderately stringent Brij 96 lysis conditions, CD81 and CD9 complexes are virtually identical to each other, but clearly distinct from other TM4SF complexes. One of the most prominent proteins within CD81 and CD9 complexes is identified here as FPRP, the 133-kDa prostaglandin F(2alpha) receptor regulatory protein. FPRP, a cell-surface Ig superfamily protein, associates specifically with CD81 or with CD81 and CD9, but not with integrins or other TM4SF proteins. In contrast to other CD81- and CD9-associating proteins, FPRP associates at very high stoichiometry, with essentially 100% of cell-surface FPRP on 293 cells being CD81- and CD9-associated. Also, CD81.CD9.FPRP complexes have a discrete size (<4 x 10(6) Da) as measured by gel permeation chromatography and remain intact after disruption of cholesterol-rich membrane microdomains by methyl-beta-cyclodextrin. Although CD81 associated with both alpha(3) integrin and FPRP in 293 cells, the alpha(3)beta(1).CD81 and CD81.CD9.FPRP complexes were distinct, as determined by immunoprecipitation and immunodepletion experiments. In conclusion, our data affirm the existence of distinct TM4SF complexes with unique compositions and specifically characterize FPRP as the most robust, highly stoichiometric CD81- and/or CD9-associated protein yet described.  相似文献   

19.
Multiple levels of interactions within the tetraspanin web   总被引:6,自引:0,他引:6  
The tetraspanin web refers to a network of molecular interactions involving tetraspanins and other molecules. Inside the tetraspanin web, small primary complexes containing only one tetraspanin and one specific partner molecule such as CD151/alpha3beta1 integrin and CD9/CD9P-1 (FPRP) can be observed under particular conditions. Here we demonstrate that when cells are lysed with Brij97, the tetraspanins CD151 and CD9 allow and/or stabilize the interaction of their partner molecules with other tetraspanins and that their two partners associate under conditions maintaining tetraspanin/tetraspanin interactions. The tetraspanins were also found to partition into a detergent-resistant membrane environment to which the integrin alpha3beta1 was relocalized upon expression of CD151.  相似文献   

20.
Integrins are involved in several ways in keratinocyte physiology, including cell motility. CD9 is a member of the tetraspanin protein family which is found in association with other transmembrane proteins like the integrins. CD9 is expressed in the epidermal tissue, but this expression is not regulated by differentiation. The present work focuses on association of CD9 with the integrin alpha6beta4 in keratinocytes. In vivo, CD9 does not co-localize with alpha6beta4, and is not internalized with the integrin upon basal detachment with dispase. In vitro, CD9 is found partly in co-localization with alpha6beta4 and is internalized with the integrin after keratinocyte detachment with dispase. Using blocking antibodies in a phagokinetic tracks assay, we show that CD9, and to a lesser extent alpha6beta4, but not the tetraspanin CD82, promote motility of subconfluent keratinocytes on collagen I. Our observations also suggest that CD9 is involved in the formation of lamellipodia. We also report that the phorbol ester TPA has no effect on CD9 expression and association with alpha6beta4, but increases keratinocyte motility, possibly through modulation of integrin subunits expression, or through upregulation of collagenase-1 expression. Together, these results confirm that CD9 associates with alpha6beta4 in cultured keratinocytes, possibly in order to regulate the function of the integrin, and that CD9 is involved in keratinocyte motility on collagen. The data suggest that regulation of adhesion characteristics by CD9 in keratinocytes may play a role in epidermal repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号