首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Inactivation of rat renal phosphate-dependent glutaminase by 6-diazo-5-oxo-L-norleucine occurs only under conditions where the enzyme is catalytically active. The glutaminase activity and the rate of inactivation by the diazoketone exhibit very similar phosphate concentration-dependent activation profiles. Because of this phosphate dependency, it was not possible to differentiate an apparent protection by glutamine from the strong inhibition of inactivation caused by glutamate. The ability of glutamate to protect the glutaminase against inactivation is reversed by increasing concentrations of phosphate.The observed characteristics of inactivation by 6-diazo-5-oxo-L-norleucine differ considerably from those reported for the inactivation by L-2-amino-4-oxo-5-chloropentanoic acid. In addition, the presence of o-carbamoyl-L-serine was found to stimulate inactivation by 6-diazo-5-oxo-L-norleucine, but to protect the glutaminase against inactivation by the chloroketone. Preinactivation of the glutaminase by the diazoketone only slightly reduced the stoichiometry of binding of [5-14C]chloroketone. These observations suggest that 6-diazo-5-oxo-L-norleucine and L-2-amino-4-oxo-5-chloropentanoic acid interact with different sites on the glutaminase which are specific for binding glutamine and glutamate, respectively.  相似文献   

2.
The substrate binding site of aspartate-beta-semialdehyde dehydrogenase from Escherichia coli was studied by affinity labeling with L-2-amino-4-oxo-5-chloropentanoic acid. The substrate analogue irreversibly inactivates the enzyme with pseudo-first-order kinetics and with a half-of-the-sites reactivity. The substrate aspartate beta-semialdehyde protects the enzyme against the inactivation. A single group is labeled at the active site and is concluded to be the side-chain of a histidine residue. The amino acid sequence around the active site residue was established from a peptic digest of the labeled enzyme: Phe-Val-Gly-Gly-Asp-(modified residue)-Thr-Val-Ser.  相似文献   

3.
Rat renal phosphate-dependent glutaminase is rapidly inactivated by incubating with L-2-amino-4-oxo-5-chloropentanoic scid. Concentrations of phosphate, which increase the glutaminase activity, decrease the rate of inactivation by chloroketone. In addition, inactivation is not blocked by glutamine. Instead, glutamate was shown to specifically reduce the rate of chloroketone inactivation. Upon sodium lauryl sulfate-polyacrylamide gel electrophoresis, the purified glutaminase preparation exhibits at least five protein staining bands which range in molecular weight from 57,000 to 75,000. Studies with 14C-labeled chloroketone indicate that this reagent reacts with each of these peptides. The mean stoichiometry of binding was calculated to be 1.3 mol/mol of enzyme. Therefore, these results indicate that the glutaminase may contain a specific site for binding glutamate and that the purified enzyme consists of a series of related peptides which may have resulted from partial proteolysis.  相似文献   

4.
γ-Glutamylcysteine synthetase is strongly inhibited by cystamine; thus, 20 μM cystamine inhibited the activity by 50%. Inhibition is rapid and the inhibited enzyme is reactivated by dithiothreitol suggesting that cystamine reacts with an enzyme sulfhydryl group. Inhibition by cystamine is not prevented by MgATP, L-α-aminobutyrate, or L-glutamate suggesting that cystamine may not interact at the active site. Little or no inhibition was observed with N,N′-diacetyl cystamine, L-cystine, glutathione disulfide, 2-hydroxyethyl disulfide, and thioglycolate disulfide, whereas thiocholine disulfide produced moderate inhibition. Cystamine or an inhibitory analog of cystamine might be useful in the therapy of the disease 5-oxoprolinuria in which there is an overproduction of γ-glutamylcysteine.  相似文献   

5.
gamma-Glutamylcysteine synthetase (isolated from rat kidney) has one sulfhydryl group that reacts with 5,5'-dithiobis-(2-nitrobenzoate). This single exposed sulfhydryl group is not required for enzyme activity. The enzyme is potently inactivated by cystamine, which apparently interacts with a sulfhydryl group at the active site to form a mixed disulfide. 5,5'-Dithiobis-(2-nitrobenzoate) does not interact with the sulfhydryl group that reacts with cystamine. After the enzyme was 90% inactivated by reaction with cystamine, 3.4 mol of 5,5'-dithiobis-(2-nitrobenzoate) reacted per mol of enzyme, indicating that binding of cystamine exposes sulfhydryl groups which are apparently buried or unreactive in the native enzyme. L-Glutamate (but not D-glutamate or L-alpha-aminobutyrate) protected against inactivation by cystamine. In contrast, ATP enhanced the rate of inactivation by cystamine, and the apparent Km value for this effect is similar to that for ATP in the catalytic reaction. Studies on the structural features of cystamine that facilitate its interaction with the enzyme showed that selenocystamine, monodansylcystamine, and N-[2[2-aminoethyl)-dithio)ethyl]-4-azido-2-nitrobenzeneamine are also good inhibitors. Whereas S-(S-methyl)cysteamine-Sepharose does not interact with the enzyme (Seelig, G. F., and Meister, A. (1982) J. Biol. Chem. 257, 5092-5096), S-(S-methyl)cysteamine is a potent inhibitor; 1 mol of this compound completely inactivated 1 mol of enzyme. In the course of this work, a useful modification of the method for isolating this enzyme from kidney was developed.  相似文献   

6.
gamma-Glutamylcysteine synthetase was purified from rat liver by an improved method involving chromatography on Sepharose-aminohexyl-ATP to a specific activity of about 1600 units/mg, or approximately twice that previously obtained; it is thus the most active preparation of this enzyme thus far isolated. The earlier preparation, which is homogeneous on polyacrylamide gel electrophoresis, exhibits "half of the sites" reactivity in that it binds a maximum of 0.5 mol of the inhibitor L-methionine-S-sulfoximine phosphate per mol of enzyme. In contrast, the present enzyme preparation binds 1 mol of methionine sulfoximine phosphate per mol of enzyme; it also differs from the enzyme obtained earlier in exhibiting much less ATPase activity and less activity in catalyzing ATP-dependent cyclization of glutamate. gamma-Glutamylcysteine synthetase dissociates in sodium dodecyl sulfate into two nonidentical subunits of apparent molecular weights 74,000 and 24,000; after cross-linking with dimethyl-suberimidate, a species having a molecular weight of about 100,000 was found on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. New information has been obtained about the interaction of the enzyme with glutamate analogs; thus, the enzyme is active with such glutamate analogs as beta-glutamate, N-methyl-L-glutamate, and threo-beta-hydroxy-L-glutanate, and it is effectively inhibited by cis-1-amino-1,3-dicarboxycyclonexane, 2-amino-4-phosphonobutyrate, and gamma-methylglutamate.  相似文献   

7.
Inhibition of yeast aminopeptidase I by N-[(2S,3S)-3-amino-2-hydroxyl-1-oxo-4-phenylbutyl]-L-leucine [(2S,3S)-Ahp-Leu];a stereoisomer of natural bestatin, is a slow process with half-times in the minute range. Action of the inhibitor is non-competitive with respect to the substrate. Up to 1 mol of (2S,3S)-Ahp-Leu is bound per mol of enzyme subunit. Inhibitor binding does not interfere with binding of essential metal ions but completely suppresses allosteric activation by chloride and high Zn(II)-concentrations. These and other findings suggest that (2S,3S)-Ahp-Leu inhibits aminopeptidase I by stabilizing a weakly active enzyme conformation.  相似文献   

8.
Alkylation of guanosine 5'-monophosphate (GMP) synthetase with the glutamine analogs L-2-amino-4-oxo-5-chloropentanoic acid (chloroketon) and 6-diazo-5-oxonorleucine (DON) inactivated glutamine- and NH3-dependent GMP synthetase. Inactivation exhibited second order kinetics. Complete inactivation was accompanied by covalent attachment of 0.4 to 0.5 equivalent of chloroketon/subunit. Alkylation of GMP synthetase with iodacetamide selectively inactivated glutamine-dependent activity. The NH3-dependent activity was relatively unaffected. Approximately 1 equivalent of carboxamidomethyl group was incorporated per subunit. Carboxymethylcysteine was the only modified amino acid hydrolysis. Prior treatment with chloroketone decreased the capacity for alkylation by iodacetamide, suggesting that both reagents alkylate the same residue. GMP synthetase exhibits glutaminase activity when ATP is replaced by adenosine plus PPi. Iodoacetamide inactivates glutaminase concomitant with glutamine-dependent GMP synthetase. Analysis of pH versus velocity and Km data indicates that the amide of glutamine remains enzyme bound and does not mix with exogenous NH3 in the synthesis of GMP.  相似文献   

9.
The enzyme dihydropterin oxidase has been purified to apparent homogeneity from the fruit fly Drosophila melanogaster. This enzyme uses a variety of 2-amino-4-oxo-7,8-dihydropteridine compounds as substrates, including 2-amino-4-oxo-7,8-dihydropteridine (called dihydropterin), Km = 0.11 microM; 6-lactoyl-7,8-dihydropterin, Km = 1.80 microM; and 7,8-dihydrobiopterin, Km = 1.25 microM. The products in each case are the corresponding fully oxidized compounds 2-amino-4-oxopteridine, oxidized 6-lactoyl-7,8-dihydropterin, and 6-L-erythro-dihydroxypropylpterin, respectively. During the reaction, 1 mol of molecular oxygen is consumed per mole of substrate oxidized, and hydrogen peroxide is produced. The molecular weight of the enzyme is approximately 51,500. The enzyme apparently contains two polypeptide chains of identical molecular weight. The prosthetic group of the enzyme has been identified as FAD. From the determination of the occurrence of the enzyme in the various stages of the life cycle of D. melanogaster and from other considerations, the tentative conclusion is reached that the physiological role of dihydropterin oxidase is to convert dihydropterin to 2-amino-4-oxopteridine, a reaction that is believed to be essential in the formation of 2-amino-4-oxo-7-hydroxypterin in D. melanogaster.  相似文献   

10.
P M Anderson  J D Carlson 《Biochemistry》1975,14(16):3688-3694
Carbamyl phosphate synthetase from Escherichia coli reacts stoichiometrically (one to one) with [14C]cyanate to give a 14C-labeled complex which can be isolated by gel filtration. The formation of the complex is prevented if L-glutamine is present or if the enzyme is first reacted with 2-amino-4-oxo-5-chloropentanoic acid, a chloro ketone analog of glutamine which has been shown to react with a specific SH group in the glutamine binding site. The rate of complex formation is increased by ADP and decreased by ATP and HCO3-. The isolated complex is inactive with respect to glutamine-dependent synthetase activity. However, the reaction of cyanate with the enzyme is reversible. The rate of dissociation of the isolated complex is not affected by pH (over the pH range 6-10), is greatly increased by ATP and HCO3-, and is decreased by ADP. The allosteric effectors ornithine and UMP have no effect on either the rate of formation or the rate of dissociation of the complex; however, the apparent affinity of the enzyme for ATP is decreased by UMP and increased by ornithine. The site of reaction of cyanate with carbamyl phosphate synthetase, which is composed of a light and a heavy subunit, is with an SH group in the light subunit to give an S-carbamylcysteine residue. The binding of L-[14C]glutamine to the enzyme and the inhibition of glutamine-dependent synthetase activity by the chloroketone analog are both prevented by the presence of cyanate. The reaction with cyanate is considered to be with the same essential SH group which is located in the glutamine binding site and is alkylated by 2-amino-4-oxo-5-chloropentanoic acid. The bicarbonate-dependent effects of ATP suggest that formation of the activated carbon dioxide intermediate is accompanied by changes in the heavy subunit which functionally alter the properties of the glutamine binding site on the light subunit. The allosteric effects of ornithine and UMP are probably not related to this intersubunit interaction.  相似文献   

11.
As a continuation of our efforts to discover and develop the apoptosis inducing 4-aryl-4H-chromenes as potential anticancer agents, we explored the removal of the chiral center at the 4-position and prepared a series of 4-aryl-2-oxo-2H-chromenes. It was found that, in general, removal of the chiral center and replacement of the 2-amino group with a 2-oxo group were tolerated and 4-aryl-2-oxo-2H-chromenes exhibited SAR similar to 4-aryl-2-amino-4H-chromenes. The 4-aryl-2-oxo-2H-chromenes with a N-methyl pyrrole fused at the 7,8-positions were highly active with compound 2a having an EC(50) value of 13 nM in T47D cells. It was found that an OMe group was preferred at the 7-position. 7-NMe(2), 7-NH(2), 7-Cl and 7,8 fused pyrido analogs all had low potency. These 4-aryl-2-oxo-2H-chromenes are a series of potent apoptosis inducers with potential advantage over the 4-aryl-2-amino-4H-chromenes series via elimination of the chiral center at the 4-position.  相似文献   

12.
gamma-Glutamylcysteine synthetase is inactivated by incubation with low concentrations of L-2-amino-4-oxo-5-chloropentanoate. Very low concentrations of magnesium ions or certain other divalent cations are required for inactivation. L-Glutamate, but not D-glutamate or L-glutamine, protected against inactivation and the protective effect of L-glutamate was increased in the presence of ATP or ADP. L-alpha-Aminobutyrate increased the rate of inactivation by the chloroketone. When the chloroketone was added to the dipeptide synthesis system, inhibition was competitive with L-glutamate. Iodoacetamide also inhibited the enzyme; however, this reagent is much less effective than the chloroketone and inhibition by iodoacetamide is less effectively prevented by L-glutamate. Studies with 14C-labeled chloroketone showed that this reagent binds stoichiometrically to the enzyme, and that it binds exclusively to its heavy subunit.  相似文献   

13.
Glutamine 5-phosphoribosylamine:pyrophosphate phosphoribosyltransferase (amidophosphoribosyl-transferase) has been purified to homogeneity from Escherichia coli. The molecular weight of the native enzyme was 194,000 by sedimentation equilibrium centrifugation and 224,000 by gel filtration. A subunit Mr = 57,000 was estimated by gel electrophoresis in sodium dodecyl sulfate. Cross-linking experiments gave species of Mr = 57,000, 117,000, and 177,000. A trimer or tetramer of identical subunits is indicated for the native enzyme. Highly active E. coli amidophosphoribosyl-transferase lacks significant nonheme iron. Enzyme activity was not enhanced by addition of iron salts and sulfide. Amidophosphoribosyltransferase exhibited both NH3- and glutamine-dependent activities. Glutaminase activity was detected in the absence of other substrates. Both glutamine- and NH3-dependent activities were subject to end product inhibition by purine 5'-ribonucleotides. AMP and GMP, in combination, gave synergistic inhibition. AMP and GMP exhibited positive cooperativity. In addition, GMP promoted cooperativity for saturation by 5-phosphoribosyl-1-pyrophosphate. Glutamine utilization was inhibited by NH3, suggesting that the amide of glutamine is transferred to the NH3 site prior to amination of 5-phosphoribosyl-1-pyrophosphate. The glutamine-dependent activity was selectively inactivated by the glutamine analogs L-2-amino-4-oxo-5-chloropentanoic acid and 6-diazo-5-oxo L-norleucine (DON) and by iodoacetamide. Incorporation of 1 eq of DON/subunit (Mr = 57,000) caused complete inactivation of the glutamine-dependent activity, thus providing evidence for one glutamine site per monomer and for the functional identity of the subunits. Following alkylation with iodoacetamide, carboxymethylcysteine was the only modified amino acid isolated from an acid hydrolysate. The glutamine-dependent activity was sensitive to oxidation. Inactivation by exposure to air was reversed by incubation with high concentrations of dithiothreitol.  相似文献   

14.
Sparsomycin is an antitumor antibiotic produced by Streptomyces sparsogenes. Biosynthetic experiments have previously demonstrated that one component of sparsomycin is derived from L-tryptophan via the intermediacy of (E)-3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid and (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid. An enzyme which catalyzes the conversion of (E)-3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid to (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid has been purified 740-fold to homogeneity from S. sparsogenes. The molecular mass of the native and denatured enzyme was 87 kDa, indicating that the native enzyme is monomeric. The enzyme required NAD+ for activity but lacked rigid substrate specificity, since analogs of both NAD+ and 3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid could serve as substrates. The enzyme was very weakly inhibited by mycophenolic acid. Monovalent cations were required for activity, with potassium ions being the most effective. The enzyme exhibited sensitivity toward diethylpyrocarbonate and some thiol-directed reagents, and it was irreversibly inhibited by 6-chloropurine. The properties of the enzyme suggest it is mechanistically related to inosine-5'-monophosphate dehydrogenase.  相似文献   

15.
Properties of glutamine-dependent glutamate synthase have been investigated using homogeneous enzyme from Escherichia coli K-12. In contrast to results with enzyme from E. coli strain B (Miller, R. E., and Stadtman, E. R. (1972) J. Biol. Chem. 247, 7407-7419), this enzyme catalyzes NH3-dependent glutamate synthase activity. Selective inactivation of glutamine-dependent activity was obtained by treatment with the glutamine analog. L-2-amino-4-oxo-5-chloropentanoic acid (chloroketone). Inactivation by chloroketone exhibited saturation kinetics; glutamine reduced the rate of inactivation and exhibited competitive kinetics. Iodoacetamide, other alpha-halocarbonyl compounds, and sulfhydryl reagents gave similar selective inactivation of glutamine-dependent activity. Saturation kinetics were not obtained for inactivation by iodoacetamide but protection by glutamine exhibited competitive kinetics. The stoichiometry for alkylation by chloroketone and iodoacetamide was approximately 1 residue per protomer of molecular weight approximately 188,000. The single residue alkylated with iodo [1-14C]acetamide was identified as cysteine by isolation of S-carboxymethylcysteine. This active site cysteine is in the large subunit of molecular weight approximately 153,000. The active site cysteine was sensitive to oxidation by H2O2 generated by autooxidation of reduced flavin and resulted in selective inactivation of glutamine-dependent enzyme activity. Similar to other glutamine amidotransferases, glutamate synthase exhibits glutaminase activity. Glutaminase activity is dependent upon the functional integrity of the active site cysteine but is not wholly dependent upon the flavin and non-heme iron. Collectively, these results demonstrate that glutamate synthase is similar to other glutamine amidotransferases with respect to distinct sites for glutamine and NH3 utilization and in the obligatory function of an active site cysteine residue for glutamine utilization.  相似文献   

16.
M Fujioka  K Konishi  Y Takata 《Biochemistry》1988,27(20):7658-7664
Rat liver guanidinoacetate methyltransferase, produced in Escherichia coli by recombinant DNA technique, possesses five cysteine residues per molecule. No disulfide bond is present. Analysis of the chymotryptic peptides derived from the iodo[14C]acetate-modified enzyme shows that Cys-90, Cys-15, Cys-219, and Cys-207 are alkylated by the reagent in order of decreasing reactivity. Incubation of the enzyme with excess 5,5'-dithiobis(2-nitrobenzoate) (DTNB) in the absence and presence of cystamine [2,2'-dithiobis(ethylamine)] causes the appearance of 4 and 5 mol of 2-nitro-5-mercaptobenzoate/mol of enzyme, respectively. Reaction of the methyltransferase with an equimolar amount of DTNB results in an almost quantitative disulfide cross-linking of Cys-15 and Cys-90 with loss of a large portion of the activity. The methyltransferase is completely inactivated by iodoacetate following nonlinear kinetics. Comparison of the extent of inactivation with that of modification of cysteine residues and the experiment with the enzyme whose Cys-15 and Cys-90 are cross-linked suggest that alkylation of Cys-15 and Cys-90 results in a partially active enzyme and that carboxymethylation of Cys-219 completely eliminates enzyme activity. The inactivation of guanidinoacetate methyltransferase by iodoacetate or DTNB is not protected by substrates. Furthermore, disulfide cross-linking of Cys-15 and Cys-90 or carboxymethylation of Cys-219 does not impair the enzyme's capacity to bind S-adenosylmethionine. Thus, these cysteine residues appear to occur outside the active-site region, but their integrity is crucial for the expression of enzyme activity.  相似文献   

17.
Four methionine analog inhibitors of methionine adenosyltransferase, the enzyme which catalyzes S-adenosylmethionine biosynthesis, were tested in cultured L1210 cells for their effects on cell growth, leucine incorporation, S-adenosylmethionine (AdoMet) formation and polyamine biosynthesis. The IC50 values were as follows: selenomethionine, 0.13 mM; L-2-amino-4-methoxy-cis-but-3-enoic acid (L-cis-AMB), 0.4 mM; cycloleucine, 5 mM and 2-aminobicyclo[2.1.1]hexane-2-carboxylic acid, 5 mM. At IC50 levels, the analogs significantly reduced AdoMet pools by approximately 50% while not similarly affecting leucine incorporation or polyamine biosynthesis. In combination with inhibitors of polyamine biosynthesis, growth inhibition was greatly increased with methylglyoxal bis(guanylhydrazone), an inhibitor of AdoMet decarboxylase, but only slightly increased with alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase. Overall, the data indicate that the methionine analogs, and particularly L-cis-AMB, seem to inhibit cell growth by interference with AdoMet biosynthesis. Since polyamine biosynthesis is not affected, the antiproliferative effect may be mediated through perturbations of certain transmethylation reactions.  相似文献   

18.
Ornithine aminotransferase (L-ornithine:2-oxo-acid aminotransferase (EC 2.6.1.13)) has been purified to homogeneity from last instar larvae of the tobacco hornworm, Manduca sexta (Sphingidae). This enzyme is a 144,000-Da tetramer constructed from 36,000-Da protomeric units. It has a high aspartate/asparagine and glutamate/glutamine content and 2 cysteine residues/subunit. All 8 cysteine residues can react with N-ethylmaleimide to inactivate the enzyme. Maintenance of the enzyme in the presence of 2-mercaptoethanol and dithiothreitol maximizes enzymatic activity and improves storage conditions, presumably by protecting these sulfhydryl groups. The apparent Km values for L-ornithine and 2-oxoglutaric acid are 2.3 and 3.2 mM, respectively. The turnover number is 2.0 +/- 0.1 mumol min-1 mumol-1. L-Canaline (L-2-amino-4-(aminooxy)butyric acid) is a potent ornithine aminotransferase inhibitor. Reaction of the enzyme with L-[U-14C]canaline produces an enzyme-bound, covalently linked, radiolabeled canaline-pyridoxal phosphate oxime. The L-[U-14C]canaline-pyridoxal phosphate oxime has been isolated from canaline-treated enzyme. Dialysis of canaline-inactivated ornithine aminotransferase against free pyridoxal phosphate slowly reactivates the enzyme as the oxime is replaced by pyridoxal phosphate. Analysis of L-[U-14C]canaline binding to ornithine aminotransferase reveals the presence of 4 mol of pyridoxal phosphate/mol of enzyme.  相似文献   

19.
The complete degradation of uric acid to (S)-allantoin, as recently elucidated, involves three enzymatic reactions. Inactivation by pseudogenization of the genes of the pathway occurred during hominoid evolution, resulting in a high concentration of urate in the blood and susceptibility to gout. Here, we describe the 1.8A resolution crystal structure of the homodimeric 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase, which catalyzes the last step in the urate degradation pathway, for both ligand-free enzyme and enzyme in complex with the substrate analogs (R)-allantoin and guanine. Each monomer comprises ten alpha-helices, grouped into two domains and assembled in a novel fold. The structure and the mutational analysis of the active site have allowed us to identify some residues that are essential for catalysis, among which His-67 and Glu-87 appear to play a particularly significant role. Glu-87 may facilitate the exit of the carboxylate group because of electrostatic repulsion that destabilizes the ground state of the substrate, whereas His-67 is likely to be involved in a protonation step leading to the stereoselective formation of the (S)-allantoin enantiomer as reaction product. The structural and functional characterization of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase can provide useful information in view of the potential use of this enzyme in the enzymatic therapy of gout.  相似文献   

20.
The synthesis and biological activities of a series of spiroheterocyclic growth hormone secretagogues are reported. Modification of the spiroindane part-structure of the prototypal secretagogue L-162,752 revealed that the spiroindane could be replaced with spirobenzodihydrothiophen derivatives to enhance not only in vitro potency but also oral activity. In this study non-aromatic D-2-amino-4-cyclohexylbutanoic analogs (8a-8d) were also identified to be active secretagogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号