首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA pseudoknots are structural elements that participate in a variety of biological processes. At -1 ribosomal frameshifting sites, several types of pseudoknot have been identified which differ in their organisation and functionality. The pseudoknot found in infectious bronchitis virus (IBV) is typical of those that possess a long stem 1 of 11-12 bp and a long loop 2 (30-164 nt). A second group of pseudoknots are distinguishable that contain stems of only 5 to 7 bp and shorter loops. The NMR structure of one such pseudoknot, that of mouse mammary tumor virus (MMTV), has revealed that it is kinked at the stem 1-stem 2 junction, and that this kinked conformation is essential for efficient frameshifting. We recently investigated the effect on frameshifting of modulating stem 1 length and stability in IBV-based pseudoknots, and found that a stem 1 with at least 11 bp was needed for efficient frameshifting. Here, we describe the sequence manipulations that are necessary to bypass the requirement for an 11 bp stem 1 and to convert a short non-functional IBV-derived pseudoknot into a highly efficient, kinked frameshifter pseudoknot. Simple insertion of an adenine residue at the stem 1-stem 2 junction (an essential feature of a kinked pseudoknot) was not sufficient to create a functional pseudoknot. An additional change was needed: efficient frameshifting was recovered only when the last nucleotide of loop 2 was changed from a G to an A. The requirement for an A at the end of loop 2 is consistent with a loop-helix contact similar to those described in other RNA tertiary structures. A mutational analysis of both partners of the proposed interaction, the loop 2 terminal adenine residue and two G.C pairs near the top of stem 1, revealed that the interaction was essential for efficient frameshifting. The specific requirement for a 3'-terminal A residue was lost when loop 2 was increased from 8 to 14 nt, suggesting that the loop-helix contact may be required only in those pseudoknots with a short loop 2.  相似文献   

2.
3.
RNA virus genomes contain cis-acting sequence and structural elements that participate in viral replication. We previously identified a bulged stem-loop secondary structure at the upstream end of the 3' untranslated region (3' UTR) of the genome of the coronavirus mouse hepatitis virus (MHV). This element, beginning immediately downstream of the nucleocapsid gene stop codon, was shown to be essential for virus replication. Other investigators discovered an adjacent downstream pseudoknot in the 3' UTR of the closely related bovine coronavirus (BCoV). This pseudoknot was also shown to be essential for replication, and it has a conserved counterpart in every group 1 and group 2 coronavirus. In MHV and BCoV, the bulged stem-loop and pseudoknot are, in part, mutually exclusive, because of the overlap of the last segment of the stem-loop and stem 1 of the pseudoknot. This led us to hypothesize that they form a molecular switch, possibly regulating a transition occurring during viral RNA synthesis. We have now performed an extensive genetic analysis of the two components of this proposed switch. Our results define essential and nonessential components of these structures and establish the limits to which essential parts of each element can be destabilized prior to loss of function. Most notably, we have confirmed the interrelationship of the two putative switch elements. Additionally, we have identified a pseudoknot loop insertion mutation that appears to point to a genetic interaction between the pseudoknot and a distant region of the genome.  相似文献   

4.
Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. A pseudoknot has two stems that form a quasi-continuous helix and two connecting loops. A 1.6 A crystal structure of the beet western yellow virus (BWYV) pseudoknot reveals rotation and a bend at the junction of the two stems. A loop base is inserted in the major groove of one stem with quadruple-base interactions. The second loop forms a new minor-groove triplex motif with the other stem, involving 2'-OH and triple-base interactions, as well as sodium ion coordination. Overall, the number of hydrogen bonds stabilizing the tertiary interactions exceeds the number involved in Watson-Crick base pairs. This structure will aid mechanistic analyses of ribosomal frameshifting.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) requires a programmed -1 ribosomal frameshift to produce Gag-Pol, the precursor of its enzymatic activities. This frameshift occurs at a slippery sequence on the viral messenger RNA and is stimulated by a specific structure, downstream of the shift site. While in group M, the most abundant HIV-1 group, the frameshift stimulatory signal is an extended bulged stem-loop, we show here, using a combination of mutagenesis and probing studies, that it is a pseudoknot in group O. The mutagenesis and probing studies coupled to an in silico analysis show that group O pseudoknot is a hairpin-type pseudoknot with two coaxially stacked stems of eight base-pairs (stem 1 and stem 2), connected by single-stranded loops of 2nt (loop 1) and 20nt (loop 2). Mutations impairing formation of stem 1 or stem 2 of the pseudoknot reduce frameshift efficiency, whereas compensatory changes that allow re-formation of these stems restore the frameshift efficiency to near wild-type level. The difference between the frameshift stimulatory signal of group O and group M supports the hypothesis that these groups originate from a different monkey to human transmission.  相似文献   

6.
RNA pseudoknots play important roles in many biological processes. In the simian retrovirus type-1 (SRV-1) a pseudoknot together with a heptanucleotide slippery sequence are responsible for programmed ribosomal frameshifting, a translational recoding mechanism used to control expression of the Gag-Pol polyprotein from overlapping gag and pol open reading frames. Here we present the three-dimensional structure of the SRV-1 pseudoknot determined by NMR. The structure has a classical H-type fold and forms a triple helix by interactions between loop 2 and the minor groove of stem 1 involving base-base and base-sugar interactions and a ribose zipper motif, not identified in pseudoknots so far. Further stabilization is provided by a stack of five adenine bases and a uracil in loop 2, enforcing a cytidine to bulge. The two stems of the pseudoknot stack upon each other, demonstrating that a pseudoknot without an intercalated base at the junction can induce efficient frameshifting. Results of mutagenesis data are explained in context with the present three-dimensional structure. The two base-pairs at the junction of stem 1 and 2 have a helical twist of approximately 49 degrees, allowing proper alignment and close approach of the three different strands at the junction. In addition to the overwound junction the structure is somewhat kinked between stem 1 and 2, assisting the single adenosine in spanning the major groove of stem 2. Geometrical models are presented that reveal the importance of the magnitude of the helical twist at the junction in determining the overall architecture of classical pseudoknots, in particular related to the opening of the minor groove of stem 1 and the orientation of stem 2, which determines the number of loop 1 nucleotides that span its major groove.  相似文献   

7.
Site-directed mutations were introduced in the connecting loops and one of the two stem regions of the RNA pseudoknot in the tRNA-like structure of turnip yellow mosaic virus RNA. The kinetic parameters of valylation for each mutated RNA were determined in a cell-free extract from wheat germ. Structure mapping was performed on most mutants with enzymic probes, like RNase T1, nuclease S1 and cobra venom ribonuclease. An insertion of four A residues in the four-membered connecting loop L1 that crosses the deep groove of the pseudoknot reduces aminoacylation efficiency. Deletions up to three nucleotides do not affect aminoacylation or RNA pseudoknot formation. Deletion of the entire loop abolishes aminoacylation. Although elimination of the pseudoknot is presumed, this could not be demonstrated. Unlike the mutations in loop L1, all mutations in the three-membered connecting loop L2 that crosses the shallow groove of the RNA pseudoknot decrease the aminoacylation efficiency considerably. Nonetheless, the RNA pseudoknot is still present in most mutated RNAs. These results indicate that a number of mutations can be introduced in both loops without abolishing aminoacylation. Results obtained with the introduction of mismatches and A.U base-pairs in stem S1 of the pseudoknot, containing three G.C base-pairs in wild-type RNA, indicate that the pseudoknot is only marginally stable. Our estimation of the gain of free energy due to the pseudoknot formation is at most 2.0 kcal/mol. The pseudoknot structure can, however, be stabilized upon binding the valyl-tRNA synthetase.  相似文献   

8.
Three models for the secondary structure of the hepatitis delta virus (HDV) antigenomic self-cleaving RNA element were tested by site-directed mutagenesis. Two models in which bases 5' to the cleavage site are paired with sequence at the 3' end of the element were both inconsistent with the data from the mutagenesis. Specifically, mutations in the 3' sequence which decrease self-cleavage activity could not be compensated by base changes in the 5' sequence as predicted by these models. The evidence was consistent with a third model in which the 3' end pairs with a portion of a loop within the ribozyme sequence to generate a pseudoknot structure. This same pairing was also required to generate higher rates of cleavage in trans with a 15-mer ribozyme, thus ruling out a proposed hammerhead-like 'axehead' model for the HDV ribozyme.  相似文献   

9.
NMR methods were used to investigate a series of mutants of the pseudoknot within the gene 32 messenger RNA of bacteriophage T2, for the purpose of investigating the range of sequences, stem and loop lengths that can form a similar pseudoknot structure. This information is of particular relevance since the T2 pseudoknot has been considered a representative of a large family of RNA pseudoknots related by a common structural motif, previously referred to as 'common pseudoknot motif 1' or CPK1. In the work presented here, a mutated sequence with the potential to form a pseudoknot with a 6 bp stem2 was shown to adopt a pseudoknot structure similar to that of the wild-type sequence. This result is significant in that it demonstrates that pseudoknots with 6 bp in stem2 and a single nucleotide in loop1 are indeed feasible. Mutated sequences with the potential to form pseudoknots with either 5 or 8 bp in stem2 yielded NMR spectra that could not confirm the formation of a pseudoknot structure. Replacing the adenosine nucleotide in loop1 of the wild-type pseudoknot with any one of G, C or U did not significantly alter the pseudoknot structure. Taken together, the results of this study provide support for the existence of a family of similarly structured pseudoknots with two coaxially stacked stems, either 6 or 7 bp in stem2, and a single nucleotide in loop1. This family includes many of the pseudoknots predicted to occur downstream of the frameshift or readthrough sites in a significant number of viral RNAs.  相似文献   

10.
The stimulatory RNA of the Visna-Maedi virus (VMV) -1 ribosomal frameshifting signal has not previously been characterized but can be modeled either as a two-stem helix, reminiscent of the HIV-1 frameshift-stimulatory RNA, or as an RNA pseudoknot. The pseudoknot is unusual in that it would include a 7 nucleotide loop (termed here an interstem element [ISE]) between the two stems. In almost all frameshift-promoting pseudoknots, ISEs are absent or comprise a single adenosine residue. Using a combination of RNA structure probing, site directed mutagenesis, NMR, and phylogenetic sequence comparisons, we show here that the VMV stimulatory RNA is indeed a pseudoknot, conforming closely to the modeled structure, and that the ISE is essential for frameshifting. Pseudoknot function was predictably sensitive to changes in the length of the ISE, yet altering its sequence to alternate pyrimidine/purine bases was also detrimental to frameshifting, perhaps through modulation of local tertiary interactions. How the ISE is placed in the context of an appropriate helical junction conformation is not known, but its presence impacts on other elements of the pseudoknot, for example, the necessity for a longer than expected loop 1. This may be required to accommodate an increased flexibility of the pseudoknot brought about by the ISE. In support of this, (1)H NMR analysis at increasing temperatures revealed that stem 2 of the VMV pseudoknot is more labile than stem 1, perhaps as a consequence of its connection to stem 1 solely via flexible single-stranded loops.  相似文献   

11.
Retroviruses, such as murine leukemia virus (MuLV), whose gag and pol genes are in the same reading frame but separated by a UAG stop codon, require that 5-10 % of ribosomes decode the UAG as an amino acid and continue translation to synthesize the Gag-Pol fusion polyprotein. A specific pseudoknot located eight nucleotides 3' of the UAG is required for this redefinition of the UAG stop codon. The structural probing and mutagenic analyses presented here provide evidence that loop I of the pseudoknot is one nucleotide, stem II has seven base-pairs, and the nucleotides 3' of stem II are important for function. Stem II is more resistant to single-strand-specific probes than stem I. Sequences upstream of the UAG codon allow formation of two competing structures, a stem-loop and the pseudoknot.  相似文献   

12.
The equilibrium unfolding pathway of a 41-nucleotide frameshifting RNA pseudoknot from the gag-pro junction of mouse intracisternal A-type particles (mIAP), an endogenous retrovirus, has been determined through analysis of dual optical wavelength, equilibrium thermal melting profiles and differential scanning calorimetry. The mIAP pseudoknot is an H-type pseudoknot proposed to have structural features in common with the gag-pro frameshifting pseudoknots from simian retrovirus-1 (SRV-1) and mouse mammary tumor virus (MMTV). In particular, the mIAP pseudoknot is proposed to contain an unpaired adenosine base at the junction of the two helical stems (A15), as well as one in the middle of stem 2 (A35). A mutational analysis of stem 1 hairpins and compensatory base-pair substitutions incorporated into helical stem 2 was used to assign optical melting transitions to molecular unfolding events. The optical melting profile of the wild-type RNA is most simply described by four sequential two-state unfolding transitions. Stem 2 melts first in two closely coupled low-enthalpy transitions at low tmin which the stem 3' to A35, unfolds first, followed by unfolding of the remainder of the helical stem. The third unfolding transition is associated with some type of stacking interactions in the stem 1 hairpin loop not present in the pseudoknot. The fourth transition is assigned to unfolding of stem 1. In all RNAs investigated, DeltaHvH approximately DeltaHcal, suggesting that DeltaCpfor unfolding is small. A35 has the thermodynamic properties expected for an extrahelical, unpaired nucleotide. Deletion of A15 destabilizes the stem 2 unfolding transition in the context of both the wild-type and DeltaA35 mutant RNAs only slightly, by DeltaDeltaG degrees approximately 1 kcal mol-1(at 37 degrees C). The DeltaA15 RNA is considerably more susceptible to thermal denaturation in the presence of moderate urea concentrations than is the wild-type RNA, further evidence of a detectable global destabilization of the molecule. Interestingly, substitution of the nine loop 2 nucleotides with uridine residues induces a more pronounced destabilization of the molecule (DeltaDeltaG degrees approximately 2.0 kcal mol-1), a long-range, non-nearest neighbor effect. These findings provide the thermodynamic basis with which to further refine the relationship between efficient ribosomal frameshifting and pseudoknot structure and stability.  相似文献   

13.
The hepatitis C virus (HCV) is a positive-strand RNA virus belonging to the Flaviviridae. Its genome carries at either end highly conserved nontranslated regions (NTRs) containing cis-acting RNA elements that are crucial for replication. In this study, we identified a novel RNA element within the NS5B coding sequence that is indispensable for replication. By using secondary structure prediction and nuclear magnetic resonance spectroscopy, we found that this RNA element, designated 5BSL3.2 by analogy to a recent report (S. You, D. D. Stump, A. D. Branch, and C. M. Rice, J. Virol. 78:1352-1366, 2004), consists of an 8-bp lower and a 6-bp upper stem, an 8-nucleotide-long bulge, and a 12-nucleotide-long upper loop. Mutational disruption of 5BSL3.2 structure blocked RNA replication, which could be restored when an intact copy of this RNA element was inserted into the 3' NTR. By using this replicon design, we mapped the elements in 5BSL3.2 that are critical for RNA replication. Most importantly, we discovered a nucleotide sequence complementarity between the upper loop of this RNA element and the loop region of stem-loop 2 in the 3' NTR. Mismatches introduced into the loops inhibited RNA replication, which could be rescued when complementarity was restored. These data provide strong evidence for a pseudoknot structure at the 3' end of the HCV genome that is essential for replication.  相似文献   

14.
D Sung  H Kang 《Nucleic acids research》1998,26(6):1369-1372
Mutational effects on frameshifting efficiency of the RNA pseudoknot involved in ribosomal frameshifting in simian retrovirus-1 (SRV-1) have been investigated. The primary sequence and the proposed secondary structure of the SRV-1 pseudoknot are similar to those of other efficient frameshifting pseudoknots in mouse mammary tumor virus (MMTV) and feline immunodeficiency virus (FIV), where an unpaired adenine nucleotide intercalates between stem 1 and stem 2. In SRV-1 pseudoknot, the adenine nucleotide in between stem 1 and stem 2 has a potential to form an A*U base pair with the last uridine nucleotide in the loop 2, resulting in a continuous A-form helix with coaxially stacked stem 1 and stem 2. To test whether this A*U base pairing and coaxial stacking of stem 1 and stem 2 is absolutely required for efficient frameshifting in SRV-1, a series of mutants changing this potential A.U base pair to either G.C base pair or A.A, A.G, A.C, G.A, G.G mismatch is generated, and their frameshifting efficiencies are investigated in vitro using rabbit reticulocyte lysate translation assay. The frameshifting abilities of these mutant pseudoknots are similar to that of the wild-type pseudoknot, suggesting that the A*U base pair in between stem 1 and stem 2 is not necessary to promote efficient frameshifting in SRV-1. These results reveal that coaxial stacking of stem 1 and stem 2 with a Watson-Crick A.U base pair in between two stems is not a required structural feature of the pseudoknot for promoting efficient frameshifting in SRV-1. Our mutational data suggest that SRV-1 pseudoknot adopts similar structural features common to other efficient frameshifting pseudoknots as observed in MMTV and FIV.  相似文献   

15.
A procedure for RNA pseudoknot prediction   总被引:2,自引:0,他引:2  
The RNA pseudoknot has been proposed as a significant structuralmotif in a wide range of biological processes of RNAs. A pseudoknotinvolves intramolecular pairing of bases in a hairpin loop withbases outside the stem of the loop to form a second stem andloop region. In this study, we propose a method for searchingand predicting pseudoknots that are likely to have functionalmeaning. In our procedure, the orthodox hairpin structure involvedin the pseudoknot is required to be both statistically significantand relatively stable to the others in the sequence. The basesoutside the stem of the hairpin loop in the predicted pseudoknotare not entangled with any formation of a highly stable secondarystructure in the sequence. Also, the predicted pseudoknot issignificantly more stable than those that can be formed froma large set of scrambled sequences under the assumption thatthe energy contribution from a pseudoknot is proportional tothe size of second loop region and planar energy contributionfrom second stem region. A number of functional pseudoknotsthat have been reported before can be identified and predictedfrom their sequences by our method.  相似文献   

16.
Transfer-messenger RNA (tmRNA) is a unique molecule that combines properties from both tRNA and mRNA, and facilitates a novel translation reaction termed trans -translation. According to phylogenetic sequence analysis among various bacteria and chemical probing analysis, the secondary structure of the 350-400 nt RNA is commonly characterized by a tRNA-like structure, and four pseudoknots with different sizes. A mutational analysis using a number of Escherichia coli tmRNA variants as well as a chemical probing analysis has recently demonstrated not only the presence of the smallest pseudoknot, PK1, upstream of the internal coding region, but also its direct implication in trans -translation. Here, NMR methods were used to investigate the structure of the 31 nt pseudoknot PK1 and its 11 mutants in which nucleotide substitutions are introduced into each of two stems or the linking loops. NMR results provide evidence that the PK1 RNA is folded into a pseudoknot structure in the presence of Mg(2+). Imino proton resonances were observed consistent with formation of two helical stem regions and these stems stacked to each other as often seen in pseudoknot structures, in spite of the existence of three intervening nucleo-tides, loop 3, between the stems. Structural instability of the pseudoknot structure, even in the presence of Mg(2+), was found in the PK1 mutants except in the loop 3 mutants which still maintained the pseudoknot folding. These results together with their biological activities indicate that trans -translation requires the pseudoknot structure stabilized by Mg(2+)and specific residues G61 and G62 in loop 3.  相似文献   

17.
We have previously identified a functionally essential bulged stem-loop in the 3' untranslated region of the positive-stranded RNA genome of mouse hepatitis virus. This 68-nucleotide structure is composed of six stem segments interrupted by five bulges, and its structure, but not its primary sequence, is entirely conserved in the related bovine coronavirus. The functional importance of individual stem segments of this stem-loop was characterized by genetic analysis using targeted RNA recombination. We also examined the effects of stem segment mutations on the replication of mouse hepatitis virus defective interfering RNAs. These studies were complemented by enzymatic and chemical probing of the stem-loop. Taken together, our results confirmed most of the previously proposed structure, but they revealed that the terminal loop and an internal loop are larger than originally thought. Three of the stem segments were found to be essential for viral replication. Further, our results suggest that the stem segment at the base of the stem-loop is an alternative base-pairing structure for part of a downstream, and partially overlapping, RNA pseudoknot that has recently been shown to be necessary for bovine coronavirus replication.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号