首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that microinjecting cyclic GMP (cGMP) into unfertilized sea urchin eggs activates them by stimulating a rise in the intracellular free calcium ion concentration ([Ca2+]i). The increase in [Ca2+]i is similar in both magnitude and duration to the transient that activates the egg at fertilization. It is due to mobilization of calcium from intracellular stores but is not prevented by the inositol trisphosphate (InsP3) antagonist heparin. Furthermore, cGMP does not stimulate the eggs Na+/H+ antiport when the [Ca2+]i transient is blocked by the calcium chelator bis-(O-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA), suggesting that cGMP does not activate eggs by interacting with the their phosphoinositide signaling pathway. However, the [Ca2+]i increase and activation are prevented in eggs in which the InsP3-sensitive calcium stores have been emptied by the prior microinjection of the InsP3 analogue inositol 1,4,5-trisphosphorothioate. These data indicate that cGMP activates eggs by stimulating the release of calcium from an InsP3-sensitive calcium store via a novel, though unidentified, route independent of the InsP3 receptor.  相似文献   

2.
Hardie RC 《Cell calcium》2005,38(6):547-556
In vivo light-induced and basal hydrolysis of phosphatidyl inositol 4,5-bisphosphate (PIP2) by phospholipase C (PLC) were monitored in Drosophila photoreceptors using genetically targeted PIP2-sensitive ion channels (Kir2.1) as electrophysiological biosensors for PIP2. In cells loaded via patch pipettes with varying concentrations of Ca2+ buffered by 4 mM free BAPTA, light-induced PLC activity, showed an apparent bell-shaped dependence on free Ca2+ (maximum at "100 nM", approximately 10-fold inhibition at <10nM or approximately 1 microM). However, experiments where the total BAPTA concentration was varied whilst free [Ca2+] was maintained constant indicated that inhibition of PLC at higher (>100 nM) nominal Ca2+ concentrations was independent of Ca2+ and due to inhibition by BAPTA itself (IC50 approximately 8 mM). Di-bromo BAPTA (DBB) was yet more potent at inhibiting PLC activity (IC50 approximately 1mM). Both BAPTA and DBB also appeared to induce a modest, but less severe inhibition of basal PLC activity. By contrast, EGTA, failed to inhibit PLC activity when pre-loaded with Ca2+, but like BAPTA, inhibited both basal and light-induced PLC activity when introduced without Ca2+. The results indicate that both BAPTA and DBB inhibit PLC activity independently of their role as Ca2+ chelators, whilst non-physiologically low (<100 nM) levels of Ca2+ suppress both basal and light-induced PLC activity.  相似文献   

3.
M Iino  T Yamazawa  Y Miyashita  M Endo    H Kasai 《The EMBO journal》1993,12(13):5287-5291
Neurotransmitters induce contractions of smooth muscle cells initially by mobilizing Ca2+ from intracellular Ca2+ stores through inositol 1,4,5-trisphosphate (InsP3) receptors. Here we studied roles of the molecules involved in Ca2+ mobilization in single smooth muscle cells. A slow rise in cytoplasmic Ca2+ ([Ca2+]i) in agonist-stimulated smooth muscle cells was followed by a wave of rapid regenerative Ca2+ release as the local [Ca2+]i reached a critical concentration of approximately 160 nM. Neither feedback regulation of phospholipase C nor caffeine-sensitive Ca(2+)-induced Ca2+ release was found to be required in the regenerative Ca2+ release. These results indicate that Ca(2+)-dependent feedback control of InsP3-induced Ca2+ release plays a dominant role in the generation of the regenerative Ca2+ release. The resulting Ca2+ release in a whole cell was an all-or-none event, i.e. constant peak [Ca2+]i was attained with agonist concentrations above the threshold value. This finding suggests a possible digital mode involved in the neural control of smooth muscle contraction.  相似文献   

4.
An unusual inward current which is slowly elicited in the Xenopus oocyte membrane during sustained depolarization is reportedly carried by Na+. It is thought that Na+ selective channels are in some way induced to become voltage-sensitive by the depolarization. Earlier studies report that the induction process involves a phospholipase C and a protein kinase C as well as calcium ions. The present work investigated the origins of this calcium in the oocyte. We show that injection of the powerful Ca2+ chelator (BAPTA) in the oocyte, before induction of the Na+ channels, prevented the appearance of the Na+ current, confirming an important role for [Ca2+]i. However, in oocytes perfused with Ca2+ -free medium, induction of the channels could still be obtained, indicating that induction did not depend upon the entry of external Ca2+. Downmodulation of Ca2+ release from inositol 1,4,5-trisphosphate (InsP3)-sensitive stores with caffeine and with a low molecular weight heparin resulted in decreased or no Na+ currents. The results are discussed in terms of the contributions from other endogenous calcium-dependent conductances which can influence the Na+ current amplitudes and time courses. The results presented support the idea that intracellular Ca2+ increase principally due to Ca2+ released from InsP3-sensitive stores is needed by the enzyme systems to produce the depolarization-induced activation of the Na+ conductance in the Xenopus oocyte.  相似文献   

5.
The aminoguanide, methylglyoxal bis(guanylhydrazone) (MGBG), was shown to stimulate phosphorylation of RR-SRC, a synthetic protein tyrosine kinase (PTK) substrate, and different levels of tyrosyl phosphorylation of endogenous proteins in a sea urchin egg membrane-cortex preparation. Stimulating protein tyrosine kinase activity in the sea urchin egg stimulated intracellular Ca2+ release, because microinjection of 1-5 mM of MGBG into unfertilized eggs triggered a transient rise in intracellular Ca2+ activity ([Ca2+]i) after a brief latent period. Pretreating eggs with PTK-specific inhibitors, genistein or tyrphostin B42, significantly inhibited the MGBG-induced rise in [Ca2+]i. Methylglyoxal bis(guanylhydrazone) stimulation of PTK activities in the unfertilized sea urchin egg appeared to trigger Ca2+ release through phospholipase C (PLC)-dependent inositol 1,4,5-trisphosphate (InsP3) production. The MGBG-induced Ca2+ response could be suppressed in eggs preloaded with the InsP3 receptor antagonist, heparin, and was reduced in eggs pretreated with U73122, a PLC inhibitor. However, the response was unchanged in eggs treated with nicotinamide, an inhibitor of ADP-ribosyl cyclase, or nifedipine, an inhibitor of nicotinic acid adenine dinucleotide phosphate activity. These results suggest that MGBG may be useful as a chemical agonist of PTK in sea urchin eggs and allow direct testing of the PTK requirement for the transient rise in [Ca2+]i in sea urchin eggs during fertilization. Although genistein was observed to significantly delay the onset, the sperm-induced Ca2+ response in PTK inhibitor-loaded eggs otherwise appeared normal. Therefore, it was concluded that sea urchin eggs contain a PTK-dependent pathway that can mediate intracellular Ca2+ release, but PTK activity does not appear to be required for the fertilization response.  相似文献   

6.
In single liver cells, the D-myo-inositol 1,4,5-triphosphate (InsP3)-dependent agonists such as noradrenaline and angiotensin II evoke oscillations in intracellular calcium [Ca2+]i resulting mostly from the periodic release and reuptake of calcium from intracellular stores. In the present work, we have reexamined the effects of these agonists and investigated whether the natural bile acid taurolithocholic acid 3-sulfate (TLC-S), which permeabilizes the endoplasmic reticulum, could initiate oscillations of [Ca2+]i. Oscillations of [Ca2+]i were monitored with the Ca2(+)-dependent K+ permeability in whole-cell voltage-clamped guinea pig liver cells. Our results confirm the presence of two types of oscillations induced by hormones. They could be distinguished by their frequency periods. The fast (type I) had periods ranging from 5 to 12 s and the slow (type II) from 60 to 240 s. They have been respectively attributed to second messenger- and receptor-controlled oscillations, respectively. Our results also show that TLC-S, as noradrenaline and angiotensin II, induced the activation of this Ca(+)-dependent K+ current and was able to reproduce both types of oscillations. The bile acid effect was not blocked by intracellular perfusion of heparin known to inhibit both InsP3 binding and InsP3-evoked Ca2+ release in several tissues. In these conditions, TLC-S only evoked type I oscillations, suggesting that these fluctuations could originate from a mechanism that is independent of InsP3 and is an intrinsic property of internal Ca2+ stores.  相似文献   

7.
Nakada K  Mizuno J 《Theriogenology》1998,50(2):269-282
The objectives of the present study were to clarify and compare the characteristics of the transient rises in intracellular calcium concentrations ([Ca2+]i) induced either by spermatozoa or by stimulation with artificial activators in bovine oocytes. These transient rises in [Ca2+]i in oocytes matured in vitro were recorded with Ca2+ imaging using the Ca2+ indicator fura-2. During fertilization, a series of transient rises in [Ca2+]i was observed. The first Ca2+ response peaked at a concentration of 521 +/- 39 nM (n = 20) and lasted for 4 min, while the subsequent Ca2+ responses were significantly smaller and shorter, with a peak of 368 +/- 13 nM (n = 23) and a duration of 2 min. Injection of inositol 1,4,5- triphosphate (InsP3) into unfertilized oocytes caused a transient rise in [Ca2+]i in a dose-dependent manner. The maximum response was induced by 20 nA x 1 sec injection of InsP3. Thimerosal, a sulfhydryl reagent, induced the repetitive transient rises in [Ca2+]i. The peak and the duration of the rises in [Ca2+]i induced by InsP3 or thimerosal were smaller and shorter, respectively, than those of the first rise induced by spermatozoa. Ethanol and Ca2+ ionophore IA23187, which are general parthenogenetic activators of unfertilized oocytes, each induced a single transient rise in [Ca2+]i. The duration of the rise in [Ca2+]i by ethanol or Ca2+ ionophore was significantly longer than that by spermatozoa at fertilization, although the peaks were smaller. These results clarified the characteristics of the rises in [Ca2+]i induced by spermatozoa and by several artificial reagents, and showed that the first rise in [Ca2+]i induced by spermatozoa had a higher peak [Ca2+]i and a longer duration compared with each the subsequent rises in [Ca2+]i and the rises in [Ca2+]i induced by artificial reagents. These indicate that a mode like as the first rise in [Ca2+]i induced by spermatozoa is an effective trigger for artificial activation of oocytes.  相似文献   

8.
Mercury is a non-essential heavy metal affecting intracellular Ca2+ dynamics. We studied the effects of Hg2+ on [Ca2+]i in trout hepatoma cells (RTH-149). Confocal imaging of fluo-3-loaded cells showed that Hg2+ induced dose-dependent, sustained [Ca2+]i transient, triggered intracellular Ca2+ waves, stimulated Ca2+-ATPase activity, and promoted InsP3 production. The effect of Hg2+ was reduced by the Ca2+ channel blocker verapamil and totally abolished by extracellular GSH, but was almost unaffected by cell loading with the heavy metal chelator TPEN or esterified GSH. In a Ca2+-free medium, Hg2+ induced a smaller [Ca2+]i transient, that was unaffected by TPEN, but was abolished by U73122, a PLC inhibitor, and by cell loading with GDP-betaS, a G protein inhibitor, or heparin, a blocker of intracellular Ca2+ release. Data indicate that Hg2+ induces Ca2+ entry through verapamil-sensitive channels, and intracellular Ca2+ release via a G protein-PLC-InsP3 mechanism. However, in cells loaded with heparin and exposed to Hg2+ in the presence of external Ca2+, the [Ca2+]i rise was maximally reduced, indicating that the global effect of Hg2+ is not a mere sum of Ca2+ entry plus Ca2+ release, but involves an amplification of Ca2+ release operated by Ca2+ entry through a CICR mechanism.  相似文献   

9.
Stimulation of the nicotinic receptor of bovine chromaffin cells results in a rise in intracellular free calcium [( Ca2+]i) and subsequent release of catecholamine. This response is totally dependent on the presence of external Ca2+. Monitoring [Ca2+]i using quin-2 demonstrated a rise in [Ca2+]i in response to muscarinic agonists which was approximately 4-times less than that obtained in response to nicotinic stimulation. This atropine-sensitive [Ca2+]i rise occurred after a 10-s lag and was found to be independent of the external Ca2+, implying the existence of an intracellular Ca2+ source. Despite producing this [Ca2+]i rise low concentrations of the muscarinic agonist, methacholine (under 1 X 10(-3) M), failed to trigger secretion itself and did not effect the secretory response elicited by nicotine. Challenging the cells with higher methacholine concentrations (over 1 X 10(-3) M) resulted in the same [Ca2+]i rise, no secretion, but an inhibition of secretion due to nicotine. This latter response, however, was found to be atropine-insensitive and therefore non-muscarinic. The [Ca2+]i rise and secretion due to depolarization by 55 mM K+ were largely unaffected by prior addition 1 X 10(-2) M methacholine, inferring that high concentrations of methacholine inhibit nicotine-induced secretion by interacting with the nicotinic receptor. These results provide evidence consistent with the existence of an intracellular Ca2+ store mobilized by muscarinic receptor activation in bovine chromaffin cells and show that, despite causing a rise in [Ca2+]i, bovine chromaffin cell muscarinic stimulation does not effect secretion itself or secretion induced by either nicotine or high K+.  相似文献   

10.
Chemoattractants, used at concentrations to invoke optimal neutrophil chemotaxis, induce rapid changes in neutrophils such as a transient increase in intracellular Ca2+ ([Ca2+]i). We have previously observed that neutrophils adhering to cytokine-activated endothelial cells (EC) also respond with a rapid rise in [Ca2+]i caused by an endothelial membrane-bound form of platelet-activating factor. After preloading with the intracellular Ca(2+)-chelator bis-(O-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid (BAPTA/AM), neutrophils were no longer able to respond with a rapid rise in [Ca2+]i toward the chemoattractant FMLP or to rIL-1 beta-pretreated EC. These neutrophils were still able to adhere and migrate under the conditions tested. The only difference was that the BAPTA/AM-treated neutrophils migrated a little slower than untreated control neutrophils. This discrepancy was not observed at later time points. The BAPTA/AM-preloaded neutrophils did not differ from unloaded neutrophils in actin polymerization responses. Whereas untreated neutrophils demonstrated an up-regulation of the specific granule markers CD11b, CD45, and CD67 during migration (without any release from the azurophil granules), the BAPTA/AM pretreatment completely prevented this process. The BAPTA/AM-preloaded neutrophils did not release vitamin B12-binding protein from the specific granules upon treatment with FMLP. The down-modulation of the selectin member LAM-1, as seen upon neutrophil activation, was not affected by BAPTA/AM pretreatment of the neutrophils. Thus, neither the rapid rise in [Ca2+]i nor specific granule fusion with the plasma membrane constitute a prerequisite for neutrophil migration across resting or cytokine-activated EC.  相似文献   

11.
Members of the bombesin family of peptides potently stimulate insulin release by HIT-T15 cells, a clonal pancreatic cell line. The response to bombesin consists of a large burst in secretion during the first 30 s, followed by a smaller elevation of the secretory rate, which persists for 90 min. The aim of this study was to identify the intracellular messengers involved in this biphasic secretory response. Addition of 100 nM-bombesin to cells for 20 s increased the cellular accumulation of [3H]diacylglycerol (DAG) by 40% and that of [3H]inositol monophosphate (InsP), bisphosphate (InsP2) and trisphosphate (InsP3) by 40%, 300%, and 800%, respectively. In contrast, cyclic AMP concentrations were unaffected. Bombesin stimulation of [3H]InsP3 formation was detected at 2 s, before the secretory response, which was not measurable until 5 s. Furthermore, the potency of bombesin to stimulate [3H]InsP3 generation (ED50 = 14 +/- 9 nM) agreed with its potency to stimulate insulin release (ED50 = 6 +/- 2 nM). Consistent with its effects on [3H]InsP3 formation, bombesin raised the intracellular free Ca2+ concentration [( Ca2+]i) from a basal value of 0.28 +/- 0.01 microM to a peak of 1.3 +/- 0.1 microM by 20 s. Chelation of extracellular Ca2+ did not abolish either the secretory response to bombesin or the rise in [Ca2+]i, showing that Ca2+ influx was not required. Although the Ca2+ ionophore ionomycin (100 nM) mimicked the [Ca2+]i response to bombesin, it did not stimulate secretion. However, pretreating cells with ionomycin decreased the effects of bombesin on both [Ca2+]i and insulin release, suggesting that elevation of [Ca2+]i was instrumental in the secretory response to this peptide. To determine the role of the DAG produced upon bombesin stimulation, we examined the effects of another activator of protein kinase C, the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). TPA did not affect [Ca2+]i, but it increased insulin secretion after a 2 min lag. However, an immediate increase in secretion was observed when ionomycin was added simultaneously with TPA. These data indicate that the initial secretory burst induced by bombesin results from the synergistic action of the high [Ca2+]i produced by InsP3 and DAG-activated protein kinase C. However, activation of protein kinase C alone appears to be sufficient for a sustained secretory response.  相似文献   

12.
In human neuroblastoma IMR32 cells, the effect of the anti-depressant maprotiline on baseline intracellular Ca2+ concentrations ([Ca2+]i) was explored by using the Ca2+-sensitive probe fura-2. Maprotiline at concentrations greater than 100 microM caused a rapid rise in [Ca2+]i in a concentration-dependent manner (EC50 = 200 microM). Maprotiline-induced [Ca2+]i rise was reduced by 50% by removal of extracellular Ca2+. Maprotiline-induced [Ca2+]i rises were inhibited by half by nifedipine, but was unaffected by verapamil or diiltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of maprotiline on [Ca2+]i was abolished. U73122, an inhibitor of phospholipase C, did not affect maprotiline-induced [Ca2+]i rises. These findings suggest that in human neuroblastoma cells, maprotiline increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum via a phospholiase C-independent manner.  相似文献   

13.
Fluorescence ratio imaging indicates that immobilized, aspirin-treated platelets, loaded with Fura-2, respond to inositol 1,4,5-trisphosphate- (InsP3)-generating agonists such as thrombin by high-frequency, irregular rises in cytosolic [Ca2+]i with spikes that vary in peak level and peak-to-peak interval. This differs from the regular [Ca2+]i oscillations observed in other, larger cells. We found that the thiol-reactive compounds thimerosal (10 microm) and U73122 (10 microm) evoked similar irregular Ca2+ responses in platelets, but in this case in the absence of InsP3 generation. Thrombin-induced spiking was acutely abolished by inhibiting phospholipase C or elevating intracellular cAMP levels, while spiking with sulfhydryl reagents was only partially blocked by cAMP elevation. Confocal laser scanning microscopy using fluo-3-loaded platelets indicated that, with all agonists or conditions, the irregular spikes were almost instantaneously raised in various regions within a single platelet. When using saponin-permeabilized platelets, we found that InsP3-induced Ca2+ release from stores was stimulated by modest Ca2+ concentrations, pointing to a mechanism of InsP3-dependent Ca2+-induced Ca2+ release (CICR). This process was completely inhibitable by heparin. The Ca2+ release by InsP3, but not the CICR sensor, was negatively regulated by cAMP elevation. Thimerosal treatment did not release Ca2+ from intracellular stores, but markedly potentiated the stimulatory effect of InsP3. In contrast, U73122 caused a heparin/cAMP-insensitive Ca2+ leak from stores that differed from those used by InsP3. Taken together, these results demonstrate that InsP3 receptor channels play a crucial role in the irregular, spiking Ca2+ signal of intact platelets, even when induced by agents such as thimerosal or U73122 which do not stimulate InsP3 formation. The irregular Ca2+ release events appear to be subjected to extensive regulation by: (a) InsP3 level, (b) the potentiating effect of elevated Ca2+ on InsP3 action via CICR, (c) InsP3 channel sensitization by sulfhydryl (thimerosal) modification, (d) InsP3 channel-independent Ca2+ leak with U73122, and (e) down-regulation via cAMP elevation. The observation that individual Ca2+ peaks were generated in various parts of a platelet at similar intervals and amplitudes points to effective cooperation of the various stores in the Ca2+-release process.  相似文献   

14.
The relationship between calcium mobilization and phospholipase D (PLD) activation in response to E-series prostaglandins (PGEs) was investigated in human erythroleukemia cells. Intracellular free Ca2+ concentration ([Ca2+]i) was increased by PGE1 and PGE2 over the same concentration range at which PLD activation was seen. Pretreatment of cells with pertussis toxin greatly inhibited the PGE-stimulated increase in [Ca2+]i, implying that a G protein participates in the PGE receptor signaling process. The peak level and also the plateau level of Ca2+ mobilization stimulated by these prostaglandins were markedly decreased in Ca(2+)-depleted medium, indicating that both extracellular and intracellular Ca2+ stores contribute to the changes in [Ca2+]i. Likewise, activation of PLD by PGE1 and PGE2 was abolished by pertussis toxin pretreatment or incubation in Ca(2+)-depleted medium. U73122, a putative phospholipase C inhibitor, blocked both Ca2+ mobilization and PLD activation in PGE-stimulated cells. Furthermore, the intracellular loading of BAPTA, a Ca2+ chelator, inhibited both Ca2+ mobilization and PLD activation by PGE1 and PGE2 in a similar dose-dependent manner. Simultaneous measurement of [Ca2+]i and PLD activity in the same cell samples indicated that PLD activity increases as a function of [Ca2+]i in a similar fashion in cells stimulated either by PGEs or by the calcium ionophore ionomycin. Taken together, these findings suggest that a rise in [Ca2+]i is necessary for PGE-stimulated PLD activity in human erythroleukemia cells.  相似文献   

15.
The dependence of phospholipase C activity on the cytosolic Ca2+ concentration ([Ca2+]i) was studied in intact liver cells treated with the Ca2+-mobilizing hormone vasopressin, or not so treated. Phospholipase C (PLC) activity was estimated from the formation of [3H]inositol trisphosphate (InsP3) and the degradation of [3H]phosphatidylinositol 4,5-bisphosphate (PtdInsP2). The [Ca2+]i of the cells was clamped from 29 to 1130 nM by quin2 loading. This wide concentration range was obtained by loading the hepatocytes with a high concentration of the Ca2+ indicator in low-Ca2+ medium or by using the Ca2+ ionophore ionomycin in medium containing Ca2+. In resting cells, in which [Ca2+]i was 193 nM, treatment with 0.1 microM-vasopressin which stimulates liver PLC maximally, tripled InsP3 content and raised [Ca2+]i to 2 microM within 15 s. Lowering [Ca2+]i partially decreased cell InsP3 content as well as the ability of vasopressin to stimulate InsP3 formation maximally. At 29 nM, the lowest Ca2+ concentration obtained in isolated liver cells, basal InsP3 content was 64% of that measured in control cells. Addition of vasopressin no longer affected [Ca2+]i, but significantly increased InsP3 by 200%, although less than in the controls (300%). The maintenance of the greater part of the PLC response at constant [Ca2+]i indicated that, in the liver, InsP3 formation does not result from an increase in [Ca2+]i. The effects of lowering [Ca2+]i were reversible. When low cell [Ca2+]i was restored to a normal value, resting InsP3 content and the ability of vasopressin to stimulate InsP3 formation maximally by 300% were also restored. Raising [Ca2+]i from 193 to 1130 nM had little effect on the InsP3 content or the vasopressin-mediated increase in InsP3. In agreement with the stimulation of PLC activity by vasopressin, cell [3H]PtdInsP2 and total PtdInsP2 were degraded by application of this hormone for 15 s. In contrast, when [Ca2+]i was lowered to 29 nM, basal [3H]PtdInsP2 and total PtdInsP2 were increased by about 30%, [3H]PtdInsP2 was further increased by vasopressin, but total PtdInsP2 was not changed. These results show that, in intact hepatocytes, PLC is little affected by [Ca2+]i concentrations above 193 nM, but is partially dependent on Ca2+ below that value. They suggest that, in addition to activating PLC activity, vasopressin might stimulate PtdInsP2 synthesis, presumably via phosphatidylinositol-phosphate kinase, and that this pathway might predominate in cells with low [Ca2+]i.  相似文献   

16.
FMLP诱导的嗜中性白细胞呼吸爆发与凋亡的关系研究   总被引:1,自引:0,他引:1  
The relationship between apoptosis of neutrophils and the change of their intracellular free Ca2+ concentration [Ca2+]i was studied. FMLP and A23187 were used to elevate the [Ca2+]i while BAPTA was used to deplete it. Fluorescence microscope, flow cytometry and gel electrophoresis were used to study the percentage of cell apoptosis and the change of f-actin during apoptosis. The results showed that the apoptosis was obviously inhibited by fMLP and A23187, while accelerated by BAPTA. The detection of f-actin showed that the f-actin depolymerized obviously during apoptosis. The elevation of [Ca2+]i inhibit the actin depolymerization while depletion of [Ca2+]i accelerated it. This result indicated that the apoptosis of neutrophil was obviously inhibited by [Ca2+]i elevation but accelerated by [Ca2+]i depletion.  相似文献   

17.
The mechanism underlying the bradykinin (BK)-induced increase of acetylcholine (ACh) release was studied in neuroblastoma x glioma hybrid NG108-15 cells and their synapses formed onto mouse muscle cells. External application of BK or iontophoretic injection of extrinsic inositol 1,4,5-trisphosphate (InsP3) into the cytoplasm of NG108-15 cells produced membrane hyperpolarization in the hybrid cells and an increase in the frequency of miniature end-plate potentials (MEPPs) in paired myotubes. Ba2+ blocked the hyperpolarization in response to BK, but facilitation of MEPPs was still observed. InsP3-dependent facilitation of MEPPs was also observed in cells where the InsP3 injections produced no detectable hyperpolarization or even depolarization. Real-time quantitative monitoring of intracellular free Ca2+ concentration [( Ca2+]i) with fura-2 in single NG108-15 cells showed that BK application or InsP3 injection induced an elevation of [Ca2+]i which coincided in time with membrane hyperpolarization recorded from the same cell. The [Ca2+]i rise produced by InsP3 injection started from the single site of injection and that produced by BK began from a deep compartment of the cytoplasm of the NG108-15 cells. The BK- and InsP3-evoked facilitation of MEPPs and the [Ca2+]i rise were relatively independent of extracellular Ca2+. These findings suggest that the BK-induced ACh release results not from membrane potential changes but from a transient InsP3-dependent elevation of [Ca2+]i.  相似文献   

18.
The effect of ketoconazole on cytosolic free Ca2+ concentrations ([Ca2+]i) and proliferation has not been explored in corneal cells. This study examined whether ketoconazole alters Ca2+ levels and causes cell death in SIRC rabbit corneal epithelial cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Ketoconazole at concentrations of 5 microM and above increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The ketoconazole-induced Ca2+ influx was insensitive to L-type Ca2+ channel blockers and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 50 microM ketoconazole, thapsigargin-(1 microM)-induced [Ca2+]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished ketoconazole-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change ketoconazole-induced [Ca2+]i rises. At concentrations between 5 and 100 microM, ketoconazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50 microM ketoconazole was not reversed by prechelating cytosolic Ca2+ with BAPTA. In summary, in corneal cells, ketoconazole-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from unknown pathways. Furthermore, the cytotoxicity induced by ketoconazole was not caused via a preceding [Ca2+]i rise.  相似文献   

19.
The ability of epidermal growth factor (EGF) and angiotensin II to stimulate production of inositol trisphosphate and mobilize intracellular Ca2+ in hepatocytes was compared using quin2 fluorescence to monitor changes in Ca2+ levels and high performance liquid chromatography to resolve the inositol trisphosphate (InsP3) isomers. Both EGF and angiotensin II stimulated an increase in free intracellular Ca2+ concentration ([Ca2+]i) as well as a rapid increase in the production of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Concentrations of angiotensin II which gave a rise in [Ca2+]i equivalent to that seen with maximal doses of EGF produced an equivalent increase in Ins(1,4,5)P3 formation. Both EGF and angiotensin II stimulated the formation of the Ins(1,3,4)P3 and inositol 1,3,4,5-tetrakisphosphate isomers. The formation of the Ins(1,3,4)P3 isomer lagged behind production of Ins(1,4,5)P3 but eventually reached higher levels in the cell. The initial rise in [Ca2+]i and InsP3 levels stimulated by EGF and angiotensin II was not affected by reducing the external Ca2+ concentration below 30 nM with an excess of [ethylenebis(oxyethylenenitrilo)] tetraacetic acid. Treatment of hepatocytes for 30-180 s with 1 micrograms/ml phorbol 12-myristate 13-acetate prior to the addition of EGF blocked the EGF-stimulated production of Ins(1,4,5)P3 and the increase in [Ca2+]i. Phorbol 12-myristate 13-acetate attenuated the production of Ins(1,4,5)P3 generated by angiotensin II over the concentration range of 10(-10) to 10(-8) M; however, the Ca2+ signal was only inhibited at the 10(-10) M dose of angiotensin II. Treatment of rats with pertussis toxin for 72 h prior to isolating hepatocytes blocked the ability of EGF to increase Ins(1,4,5)P3 and Ins(1,3,4)P3 but did not inhibit the ability of any concentration of angiotensin II to stimulate formation of InsP3 or inositol tetrakisphosphate. The observation that pertussis toxin selectively abolishes EGF-stimulated inositol lipid breakdown suggests that EGF and angiotensin II use different mechanisms to activate phospholipase C in hepatocytes.  相似文献   

20.
The effect of 2,4,6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide (m-3M3FBS), a presumed phospholipase C activator, on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unclear. This study explored whether m-3M3FBS changed basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent dye. M-3M3FBS at concentrations between 10-60 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. M-3M3FBS-induced Ca2+ influx was inhibited by the store-operated Ca2+ channel blockers nifedipine, econazole and SK&F96365, and by the phospholipase A2 inhibitor aristolochic acid. In Ca2+-free medium, 30 μM m-3M3FBS pretreatment inhibited the [Ca2+]i rise induced by the endoplasmic reticulum Ca2+ pump inhibitors thapsigargin and 2,5-di-tert-butylhydroquinone (BHQ). Conversely, pretreatment with thapsigargin, BHQ or cyclopiazonic acid partly reduced m-3M3FBS-induced [Ca2+]i rise. Inhibition of inositol 1,4,5-trisphosphate formation with U73122 did not alter m-3M3FBS-induced [Ca2+]i rise. At concentrations between 5 and 100 μM m-3M3FBS killed cells in a concentration-dependent manner. The cytotoxic effect of m-3M3FBS was not reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Propidium iodide staining data suggest that m-3M3FBS (20 or 50 μM) induced apoptosis in a Ca2+-independent manner. Collectively, in OC2 cells, m-3M3FBS induced [Ca2+]i rise by causing inositol 1,4,5-trisphosphate-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive store-operated Ca2+ channels. M-3M3FBS also induced Ca2+-independent cell death and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号