首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a two-hit model of acid aspiration lung injury, mice were subjected to nonlethal cecal ligation and puncture (CLP). After 48 h, intratracheal (IT) acid was administered, and mice were killed at several time points. Recruitment of neutrophils in response to acid was documented by myeloperoxidase assay and neutrophil counts in bronchoalveolar lavage (BAL) fluid and peaked at 8 h post-IT injection. Albumin in BAL fluid, an indicator of lung injury, also peaked at 8 h. When the contributions of the two hits were compared, neutrophil recruitment and lung injury occurred in response to acid but were not greatly influenced by addition of another hit. Neutrophil sequestration was preceded by elevations in KC and macrophage inflammatory protein-2alpha in plasma and BAL fluid. KC levels in BAL fluid were higher and peaked earlier than macrophage inflammatory protein-2alpha levels. When KC was blocked with specific antiserum, neutrophil recruitment was significantly reduced, whereas albumin in BAL fluid was not affected. In conclusion, murine KC mediated neutrophil recruitment but not lung injury in a two-hit model of aspiration lung injury.  相似文献   

2.
This study examines surfactant dysfunction in rats with inflammatory lung injury from intratracheal instillation of hydrochloric acid (ACID, pH 1.25), small nonacidified gastric particles (SNAP), or combined acid and small gastric particles (CASP). Rats given CASP had the most severe lung injury at 6, 24, and 48 h based on decreases in arterial oxygenation and increases in erythrocytes, total leukocytes, neutrophils, total protein, and albumin in bronchoalveolar lavage (BAL). The content of large surfactant aggregates in BAL was reduced in all forms of aspiration injury, but decreases were greatest in rats given CASP. Large aggregates from aspiration-injured rats also had decreased levels of phosphatidylcholine (PC) and increased levels of lyso-PC and total protein compared with saline controls (abnormalities for CASP were greater than for SNAP or ACID alone). The surface tension-lowering ability of large surfactant aggregates on a bubble surfactometer was impaired in rats with aspiration injury at 6, 24, and 48 h, with the largest activity reductions found in animals given CASP. There were strong statistical correlations between surfactant dysfunction (increased minimum surface tension and reduced large aggregate content) and the severity of lung injury based on arterial oxygenation and levels of albumin, protein, and erythrocytes in BAL (P < 0.0001). Surfactant dysfunction also correlated strongly with reduced lung volumes during inflation and deflation (P = 0.0004-0.005). These results indicate that surfactant abnormalities are functionally important in gastric aspiration lung injury and contribute significantly to the increased severity of injury found in CASP compared with ACID or SNAP alone.  相似文献   

3.
A model of aspiration lung injury was developed in WT C57BL/6 mice to exploit genetically modified animals on this background, i.e., MCP-1(-/-) mice. Mice were given intratracheal hydrochloric acid (ACID, pH 1.25), small nonacidified gastric particles (SNAP), or combined acid plus small gastric particles (CASP). As reported previously in rats, lung injury in WT mice was most severe for "two-hit" aspiration from CASP (40 mg/ml particulates) based on the levels of albumin, leukocytes, TNF-alpha, IL-1beta, IL-6, MCP-1, KC, and MIP-2 in bronchoalveolar lavage (BAL) at 5, 24, and 48 h. MCP-1(-/-) mice given 40 mg/ml CASP had significantly decreased survival compared with WT mice (32% vs. 80% survival at 24 h and 0% vs. 72% survival at 48 h). MCP-1(-/-) mice also had decreased survival compared with WT mice for CASP aspirates containing reduced particulate doses of 10-20 mg/ml. MCP-1(-/-) mice given 5 mg/ml CASP had survival similar to WT mice given 40 mg/ml CASP. MCP-1(-/-) mice also had differing responses from WT mice for several inflammatory mediators in BAL (KC or IL-6 depending on the particle dose of CASP and time of injury). Histopathology of WT mice with CASP (40 mg particles/ml) showed microscopic areas of compartmentalization with prominent granuloma formation by 24 h, whereas lung tissue from MCP-1(-/-) mice had severe diffuse pneumonia without granulomas. These results indicate that MCP-1 is important for survival in murine aspiration pneumonitis and appears to act partly to protect uninjured lung regions by promoting isolation and compartmentalization of tissue with active inflammation.  相似文献   

4.
Exogenous carbon monoxide (CO) has anti-inflammatory and cytoprotective properties that show promise in the treatment of numerous pulmonary diseases. However, the effectiveness of CO in acute pulmonary injury associated with direct lung insult has not been shown conclusively. The purpose of this study was to determine if exogenous CO would modulate the pulmonary inflammation and lung injury that develops after acid aspiration. Groups of mice were given intratracheal (IT) injections of either saline or an acidic solution. After the IT injection, some of the mice in each group were allowed to spontaneously inhale CO (500 ppm). Mice exposed to CO for 6 h after IT acid had a significant decrease in bronchoalveolar lavage (BAL) fluid neutrophil counts and in histological evidence of lung injury. These results could not be explained by changes in BAL fluid chemokine levels or altered CXCR2 expression. The reduced neutrophil recruitment was associated with a decrease in the percentage of peripheral blood neutrophils expressing CD11b protein. However, within 24 h, the BAL neutrophil counts increased and were not different from animals without CO exposure. In addition, indices of vascular integrity were not different between animals with acid aspiration regardless of CO exposure at the later time point. These results showed that CO can modulate the early development of acute lung inflammation in this model of acid aspiration. Although these effects were eventually overwhelmed, the results suggest that CO may have efficacy during the initial treatment of aspiration lung injury.  相似文献   

5.
Chiu HY  Chen CW  Lin HT  Hsieh CC  Lin SS  Cheng CM 《Cytokine》2011,56(3):726-731
Asthma is a chronic airway inflammatory disease. Chronic aspiration by gastric fluid in gastroesophageal reflux disease (GERD) is considered a primary inflammatory factor exacerbating or predisposing patients to asthma. Airway smooth muscle cells (SMCs) are considered an important component in airway remodeling. To investigate the role of gastric fluid in airway SMC inflammation and airway remodeling, we examined gastric fluid-induced cytokine and chemokine profiles, airway SMC migration and matrix metalloproteinase expression in rat primary rat airway SMCs. The T helper cell type 2 (Th2) cytokines interleukin 4, interleukin 6 and tumor necrosis factor 2 (TNF-α) and the chemokines, lipopolysaccharide-induced CXC chemokine (LIX/CXCL5), cytokine-induced neutrophil chemoattractant 2 (CINC-2), CINC-3, fractalkine, ciliary neurotrophic factor (CNTF), and vascular endothelial growth factor were induced by gastric fluid in primary cultured rat airway SMCs. Migration of rat airway SMCs was enhanced by gastric fluid and conditioned medium. The migration of rat airway SMCs enhanced by gastric fluid was associated with actin polymerization and activation of focal adhesion kinase. Matrix metalloproteinase 2 expressions in airway SMCs was enhanced by gastric fluid and conditioned medium. The results suggest potential mechanisms by which gastric fluid aspiration might influence SMC-mediated airway remodeling.  相似文献   

6.
Increased reactive oxidant intermediates (ROIs) from primed leukocytes have been implicated in the pathogenesis of acid aspiration lung injury. To evaluate the specific role of the phagocyte NADPH oxidase-derived ROIs in acid lung injury, the p47phox-/- knockout mouse model of chronic granulomatous disease was used. p47phox-/- mice developed a significantly greater alveolar neutrophilic leukocytosis compared with wild-type mice at all time points after acid injury, with the difference between genotypes being most marked at 48 h. In contrast, the p47phox-/- mice had a decreased number of macrophages in bronchoalveolar lavage (BAL) compared with wild-type at 48 h after acid or saline aspiration. Albumin concentration in BAL reflecting capillary leak was also greater in p47phox-/- compared with wild-type mice. BAL concentrations of proinflammatory cytokines and chemokines were greater in p47phox-/- compared with wild-type mice. These findings suggest that NADPH oxidase, directly or indirectly, plays a role in attenuating the acute neutrophilic response after acid lung injury. We speculate that this downmodulating effect may be mediated by promoting the transition from production of cytokines and chemokines involved in neutrophilic infiltration to a less injurious, chronic inflammatory response.  相似文献   

7.
Aspiration pneumonitis refers to acute chemical lung injury caused by aspiration of sterile gastric contents. The aim of this study was to evaluate the role of quercetin (QC) in acid aspiration-induced lung injury in rats. Twenty-eight female Sprague–Dawley rats were used and divided into the following groups (n = 7): sham (aspirated normal saline, S), hydrochloric acid (aspirated HCl), S plus treatment with QC (S + QC), and HCl plus treatment with QC (HCl + QC). After aspiration, the treatment groups received QC 60 mg/kg/day intraperitoneally once a day for 7 days. As a result of acid aspiration, an increase was observed in the levels of serum clara cell protein-16 (CC-16) and advanced oxidation protein products, whereas there was a decrease in serum thiobarbituric acid-reactive substances, superoxide dismutase (SOD), and catalase levels. There was a significant decrease in peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar edema, and alveolar exudate scores, except in the alveolar histiocytes in the HCl + QC group. The expression of nitric oxide synthase, which increased after aspiration in the HCl group, showed a statistically significant decrease after the QC treatment. After the treatment with QC, an increase in the serum SOD level was observed, whereas a significant decrease was determined in the serum CC-16 level relative to that of the aspiration group (HCl). The antioxidant QC is effective in the treatment of lung injury following acid aspiration and can be used as a serum CC-16 biomarker in predicting the severity of oxidative lung injury.  相似文献   

8.
Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone‐marrow‐derived mesenchymal stem cells (BMSCs) on combined acid plus small non‐acidified particle (CASP)‐induced aspiration lung injury. Enhanced green fluorescent protein (EGFP+) or EGFP? BMSCs or 15d‐PGJ2 were injected via the tail vein into rats immediately after CASP‐induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone‐marrow‐derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP‐induced lung injury. Bone‐marrow‐derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor‐α and Cytokine‐induced neutrophil chemoattractant (CINC)‐1 and the expression of p‐p65 and increased the levels of interleukin‐10 and 15d‐PGJ2 and the expression of peroxisome proliferator‐activated receptor (PPAR)‐γ in the lung tissue in CASP‐induced rats. Tumour necrosis factor‐α stimulated BMSCs to secrete 15d‐PGJ2. A tracking experiment showed that EGFP+ BMSCs were able to migrate to local lung tissues. Treatment with 15d‐PGJ2 also significantly inhibited CASP‐induced lung inflammation and the production of pro‐inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC‐derived 15d‐PGJ2 activation of the PPAR‐γ receptor, reducing the production of proinflammatory cytokines.  相似文献   

9.
Sulfidopeptide leukotrienes (LTC4/D4/E4) are suspected to be important lipid mediators in inflammatory responses in the lung. Previous investigations have provided evidence to support enhanced synthesis and secretion of these eicosanoids into bronchoalveolar lavage fluid in patients with Adult Respiratory Distress Syndrome (ARDS). We have prospectively examined the relationship between sulfidopeptide leukotriene levels in tracheal aspirates of 14 intubated and mechanically ventilated patients. When compared with the aspirate from one patient who required ventilation because of respiratory muscle weakness, the tracheal aspirates from eight ARDS patients had elevated leukotriene levels (range 2020-2052 pg/aspirate). However, the aspirates from four of the five patients with direct airway injury [inhalational burn (n = 3) and massive aspiration of gastric contents (n = 2)] contained significantly higher amounts of sulfidopeptide leukotrienes (range 10309-52244 pg/aspirate). Three of the five patients with direct airway injury did not develop ARDS. We conclude that simple aspiration of tracheal secretions can be used to monitor airway leukotriene biosynthesis in patients with lung injury and that elevated airway leukotriene levels may reflect airway epithelial damage, but may not predict the development of ARDS.  相似文献   

10.
At the gastroesophageal junction, most vertebrates possess a functional lower esophageal sphincter (LES) which may serve to regulate the passage of liquids and food into the stomach and prevent the reflux of gastric contents into the esophagus. Snakes seemingly lack an LES and consume meals large enough to extend anteriorly from the stomach into the esophagus thereby providing the opportunity for the reflux of gastric juices. To explore whether snakes experience or can prevent gastric reflux, we examined post-feeding changes of luminal pH of the distal esophagus and stomach, the fine scale luminal pH profile at the gastroesophageal junction, and the morphology of the gastroesophageal junction for the Burmese python (Python molurus), the African brown house snake (Lamprophis fuliginosus), and the diamondback water snake (Nerodia rhombifer). For each species fasted, there was no distension of the gastroesophageal junction and only modest changes in luminal pH from the distal esophagus into the stomach. Feeding resulted in marked distension and changes in tissue morphology of the gastroesophageal junction. Simultaneously, there was a significant decrease in luminal pH of the distal esophagus for pythons and house snakes, and for all three species a steep gradient in luminal pH decreasing across a 3-cm span from the distal edge of the esophagus into the proximal edge of the stomach. The moderate acidification of the distalmost portion of the esophagus for pythons and house snakes suggests that there is some anterior movement of gastric juices across the gastroesophageal junction. Given that this modest reflux of gastric fluid is localized to the most distal region of the esophagus, snakes are apparently able to prevent and protect against acid reflux in the absence of a functional LES.  相似文献   

11.
Animal models of acute lung injury   总被引:1,自引:0,他引:1  
Acute lung injury in humans is characterized histopathologically by neutrophilic alveolitis, injury of the alveolar epithelium and endothelium, hyaline membrane formation, and microvascular thrombi. Different animal models of experimental lung injury have been used to investigate mechanisms of lung injury. Most are based on reproducing in animals known risk factors for ARDS, such as sepsis, lipid embolism secondary to bone fracture, acid aspiration, ischemia-reperfusion of pulmonary or distal vascular beds, and other clinical risks. However, none of these models fully reproduces the features of human lung injury. The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury. We review the specific features of human ARDS that should be modeled in experimental lung injury and then discuss specific characteristics of animal species that may affect the pulmonary host response to noxious stimuli. We emphasize those models of lung injury that are based on reproducing risk factors for human ARDS in animals and discuss the advantages and disadvantages of each model and the extent to which each model reproduces human ARDS. The present review will help guide investigators in the design and interpretation of animal studies of acute lung injury.  相似文献   

12.
Oleic acid lung injury in sheep   总被引:3,自引:0,他引:3  
Intravenous infusion of oleic acid into experimental animals causes acute lung injury resulting in pulmonary edema. We investigated the mechanism of oleic acid lung injury in sheep. In experiments with anesthetized and unanesthetized sheep with lung lymph fistulas, we measured pulmonary arterial and left atrial pressures, cardiac output, lung lymph flow, and lymph and plasma protein concentrations. We injured the lungs with intravenous infusions of oleic acid at doses ranging from 0.015 to 0.120 ml/kg. We found that oleic acid caused reproducible dose-related increases in pulmonary arterial pressure and pulmonary vascular resistance, arterial hypoxemia, and increased protein-rich lung lymph flow and extravascular lung water. The lung fluid balance changes were characteristic of increased permeability pulmonary edema. Infusion of the esterified fat triolein had no hemodynamic or lung fluid balance effects. Depletion of leukocytes with a nitrogen mustard or platelets with an antiplatelet serum had no effect on oleic acid lung injury. Treatment of sheep before injury with methylprednisolone 30 mg/kg or ibuprofen 12.5-15.0 mg/kg also had no effects. Unlike other well-characterized sheep lung injuries, injury caused by oleic acid does not require participation of leukocytes.  相似文献   

13.
In humans, disrupted repair and remodeling of injured lung contributes to a host of acute and chronic lung disorders which may ultimately lead to disability or death. Injury-based animal models of lung repair and regeneration are limited by injury-specific responses making it difficult to differentiate changes related to the injury response and injury resolution from changes related to lung repair and lung regeneration. However, use of animal models to identify these repair and regeneration signaling pathways is critical to the development of new therapies aimed at improving pulmonary function following lung injury. The mouse pneumonectomy model utilizes compensatory lung growth to isolate those repair and regeneration signals in order to more clearly define mechanisms of alveolar re-septation. Here, we describe our technique for performing mouse pneumonectomy and sham pneumonectomy. This technique may be utilized in conjunction with lineage tracing or other transgenic mouse models to define molecular and cellular mechanism of lung repair and regeneration.  相似文献   

14.
Although gastric acid aspiration causes rapid lung inflammation and acute lung injury, the initiating mechanisms are not known. To determine alveolar epithelial responses to acid, we viewed live alveoli of the isolated lung by fluorescence microscopy, then we microinjected the alveoli with HCl at pH of 1.5. The microinjection caused an immediate but transient formation of molecule-scale pores in the apical alveolar membrane, resulting in loss of cytosolic dye. However, the membrane rapidly resealed. There was no cell damage and no further dye loss despite continuous HCl injection. Concomitantly, reactive oxygen species (ROS) increased in the adjacent perialveolar microvascular endothelium in a Ca(2+)-dependent manner. By contrast, ROS did not increase in wild-type mice in which we gave intra-alveolar injections of polyethylene glycol (PEG)-catalase, in mice overexpressing alveolar catalase, or in mice lacking functional NADPH oxidase (Nox2). Together, our findings indicate the presence of an unusual proinflammatory mechanism in which alveolar contact with acid caused membrane pore formation. The effect, although transient, was nevertheless sufficient to induce Ca(2+) entry and Nox2-dependent H(2)O(2) release from the alveolar epithelium. These responses identify alveolar H(2)O(2) release as the signaling mechanism responsible for lung inflammation induced by acid and suggest that intra-alveolar PEG-catalase might be therapeutic in acid-induced lung injury.  相似文献   

15.
Oleic acid injection produces acute lung injury and pulmonary hypertension in adult animals. In other types of acute lung injury, such as that caused by E. coli endotoxin, metabolites of arachidonic acid are important mediators of pulmonary hypertension. In order to understand the hemodynamic response of newborn animals to oleic acid injection and the contribution of arachidonic acid metabolites to that response, we injected oleic acid into awake, chronically instrumented newborn lambs. The hemodynamic response of lambs to injections of oleic acid alone was compared to their response after pretreatment with either FPL57231, a putative leukotriene receptor antagonist, or indomethacin, a cyclooxygenase synthesis inhibitor. Oleic acid caused acute pulmonary hypertension associated with an increase in protein-rich lung lymph fluid. Systemic hemodynamic effects were variable. FPL57231 completely blocked the oleic acid-induced pulmonary hypertension while indomethacin significantly attenuated the response. Therefore, metabolites of arachidonic acid metabolism appear to be important mediators of oleic acid-induced pulmonary hypertension in newborn lambs.  相似文献   

16.
Previously we have demonstrated that prolonged exposure to 100% ambient oxygen leads to a marked loss in functional lung volume and lung compliance, hypoxemia, and surfactant system abnormalities similar to acute respiratory distress syndrome (ARDS). However, 50% oxygen administration is believed to be safe in most clinical settings. In the present study, we have evaluated the effects of a 24-h exposure to 50% oxygen in rabbits immediately following experimental gastric acid aspiration. Mild hypoxemia, but no changes in mortality, lung volume, lung compliance, surfactant metabolism, or edema formation occurred after 24 h of normoxia postacid aspiration. Conversely, a relatively short (24-h) exposure to 50% oxygen after acid aspiration results in increased pulmonary edema, physical signs of respiratory distress, and mortality, as well as decreased arterial oxygenation, lung volume, lung compliance, and type II alveolar cell surfactant synthesis. These results suggest that acid aspiration alters the "set point" for oxygen toxicity, possibly by "priming" cells through activation of inflammatory pathways. This pathogenic mechanism may contribute to the progression of aspiration pneumonia to ARDS.  相似文献   

17.
The potential for amniotic fluid stem cell (AFSC) treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF), is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0) or chronic (day 14) intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL), but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events.  相似文献   

18.
The objective of the study was to develop a scintigraphic method for measurement of airway mucociliary clearance in small laboratory rodents such as the mouse. Previous investigations have characterized the secretory cell types present in the mouse airway, but analysis of the mucus transport system has been limited to in vitro examination of tissue explants or invasive in vivo measures of a single airway, the trachea. Three methods were used to deposit insoluble, radioisotopic colloidal particles: oropharyngeal aspiration, intratracheal instillation, and nose-only aerosol inhalation. The initial distribution of particles within the lower respiratory tract was visualized by gamma-camera, and clearance of particles was followed intermittently over 6 h and at the conclusion, 24 h postdelivery. Subsets of mice underwent lavage for evidence of tissue inflammation, and others were restudied for reproducibility of the methods. The aspiration and instillation methods of delivery led to greater distributions of deposited activity within the lungs, i.e., approximately 60--80% of the total respiratory tract radioactivity, whereas the nose-only aerosol technique attained a distribution of 32% to the lungs. However, the aerosol technique maximized the fraction of particles that cleared the airway over a 24-h period, i.e, deposited onto airway epithelial surfaces and cleared by mucociliary function such that lung retention at 24 h averaged 57% for delivery by aerosol inhalation and > or =80% for the aspiration or intratracheal instillation techniques. Particle delivery methods did not cause lung inflammation/injury with use of inflammatory cells and chemoattractant cytokines as criteria. Scintigraphy can discern particle deposition and clearance from the lower respiratory tract in the mouse, is noninvasive and reproducible, and includes the capability for restudy and lung lavage when time course or chronic treatments are being considered.  相似文献   

19.
Acid aspiration leads to increased neutrophil (PMN) oxidative metabolism, an event associated with lung leukosequestration and permeability increase. Neutropenia protected the vascular barrier function against acid injury. This study tests whether active oxygen species and elastase (which are presumably released by adherent PMNs) affect the microvascular barrier. Anesthetized rats underwent tracheostomy and insertion of a cannula into a lung segment. This was followed by localized instillation of 0.1 N HCl (n = 18) or saline (n = 18). Sequestration of PMNs in acid-aspirated and nonaspirated segments was 77 and 46 PMNs/high-power field (HPF), respectively, which was higher than control values of 11 and 8 PMNs/10 HPF in saline-aspirated and nonaspirated regions (P less than 0.05). Acid aspiration was associated with increased protein concentration in bronchoalveolar lavage (BAL) fluid to 3,550 and 2,900 micrograms/ml in the aspirated and nonaspirated lungs, respectively, which were higher than control values of 420 and 400 micrograms/ml (P less than 0.05). Acid aspiration also led to increased lung wet-to-dry weight ratios (W/D) of 6.6 and 5.4, which were higher than control values of 3.4 and 3.3 (P less than 0.05). Intravenous treatment of rats (n = 18) 90 min after aspiration with scavengers of reactive oxygen species, superoxide dismutase (1,500 U/kg), and catalase (5,000 U/kg), both conjugated to polyethylene glycol, did not reduce PMN sequestration but attenuated acid aspiration-induced increase in protein accumulation in BAL fluid in the aspirated and nonaspirated segments (990 and 610 micrograms/ml) as well as the increased lung W/D (4.6 and 4.0; all P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Food allergies affect an estimated 3 to 4% of adults and up to 8% of children in developed western countries. Results from in vitro simulated gastric digestion studies with purified proteins are routinely used to assess the allergenic potential of novel food proteins. The digestion of purified proteins in simulated gastric fluid typically progresses in an exponential fashion allowing persistence to be quantified using pseudo-first-order rate constants or half lives. However, the persistence of purified proteins in simulated gastric fluid is a poor predictor of the allergenic status of food proteins, potentially due to food matrix effects that can be significant in vivo. The evaluation of the persistence of novel proteins in whole, prepared food exposed to simulated gastric fluid may provide a more correlative result, but such assays should be thoroughly validated to demonstrate a predictive capacity before they are accepted to predict the allergenic potential of novel food proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号