首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porphyromonas gingivalis is considered an important pathogen in periodontal disease. While this organism expresses a number of virulence factors, no study combining different virulence polymorphisms has, so far, been conducted. The occurrence of combined virulence (Cv) genotypes in 62 isolates of P. gingivalis was investigated from subjects displaying either chronic periodontitis or periodontal abscess. The Cv genotypes, based on gene variation of fimbriae (fimA), Lys-specific cystein proteinase (kgp) and Arg-specific cystein proteinase (prpR1/rgpA), were evaluated by PCR. The isolates were also subjected to capsular polysaccharide K-serotyping. A total of 18 Cv genotype variants based on fimA: kgp: rgpA were identified, of which II:I:A and II:II:A Cv genotypes (53.3%) were the two most frequently detected combinations. Moreover, 36% of the isolates were K-typeable, with the K6 serotype being the most prevalent (23%). Two isolates had the same genotype as the virulent strain W83. The results indicate that chronic periodontitis is not associated with a particularly virulent clonal type. A highly virulent genotype (e.g. strain W83) of P. gingivalis can be found in certain periodontitis patients.  相似文献   

2.
The fimA gene of Xanthomonas campestris pv. vesicatoria was identified and characterized. A 20-mer degenerate oligonucleotide complementary to the N-terminal amino acid sequence of the purified 15.5-kDa fimbrillin was used to locate fimA on a 2.6-kb SalI fragment of the X. campestris pv. vesicatoria 3240 genome. The nucleotide sequence of a 1.4-kb fragment containing the fimA region revealed two open reading frames predicting highly homologous proteins FimA and FimB. FimA, which was composed of 136 amino acids and had a calculated molecular weight of 14,302, showed high sequence identity to the type IV fimbrillin precursors. fimB predicted a protein product of 135 amino acids and a molecular weight of 13,854. The open reading frame for fimB contained near the 5' end a palindromic sequence with a terminator loop potential, and the expression level of fimB in vitro and in Xanthomonas was considerably lower than that of fimA. We detected an efficiently transcribed fimA-specific mRNA of 600 bases as well as two weakly expressed, longer mRNA species that reacted with both fimA and fimB. A homolog of fimA but not of fimB was detected by Southern hybridization in strains of X. campestris pv. vesicatoria, campestris, begoniae, translucens, and graminis. A fimA::omega mutant of strain 3240 was not significantly reduced in virulence or adhesiveness to tomato leaves. However, the fimA mutant was dramatically reduced in cell aggregation in laboratory cultures and on infected tomato leaves. The fimA mutant strain also exhibited decreased tolerance to UV light.  相似文献   

3.
Expression of fimA, the structural gene for type 1 fimbriae of Escherichia coli, is phase variable. Significant homologies were identified between the recombinases which control fimbrial phase variation, FimB and FimE, and the integrase class of site-specific recombinases. Normal expression of fimA was shown to require the integration host factor (IHF). Mutations in either the himA-or the himD (hip) gene, which encode the alpha and beta subunits of IHF, respectively, prevented phase variation and locked expression of fimA in either the "on" or "off" phase. In addition, both himA and himD lesions caused a sevenfold reduction in expression of a phi(fimA-lacZ) operon fusion in strains in which fimA was locked in the on phase. Thus, IHF plays a dual role in controlling fimA expression: it is required both for inversion of the fimA control region and for efficient expression from the fimA promoter. A mechanism by which IHF may exert control over fimA expression is discussed.  相似文献   

4.
5.
6.
7.
We developed quantitative fimA genotype assays and applied them in a pilot study investigating the fimbrial genotype distribution of Porphyromonas gingivalis in European subjects with or without chronic periodontitis. P. gingivalis was found in 71% and 9% of the samples from patients and healthy subjects, respectively. Enumeration of total P. gingivalis cell numbers by polymerase chain reaction and immunofluorescence showed excellent correspondence (r = 0.964). 73% of positive samples contained multiple fimA genotypes, but generally one genotype predominated by one to three orders of magnitude. Genotype II predominated in 60% of the samples. Genotype IV occurred with similar prevalence (73%) as genotype II but predominated in only 20% of the samples. Genotypes I, III and V were of much lower prevalence and cell densities of the latter two remained sparse. Our results suggest marked differences among the fimA genotypes' ability to colonize host sites with high cell numbers.  相似文献   

8.
The present study records the strain-specific molecular typing system for Dichelobacter nodosus (D. nodosus) based on genetic analysis of fimA locus. Based on the study two new serotypes B5 and B6 are reported within the serogroup B. Out of 200 swab samples collected randomly from foot lesions of footrot affected sheep from all the districts of Kashmir, India, 122 (61.0%) detected positive for D. nodosus. Serogroup B was predominantly prevalent in 83.60% of positive samples. Restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) amplified fimA gene of D. nodosus serogroup B revealed only two fingerprint patterns (FP) designated as FP1 and FP2. The FP1 was most prevalent and depicted by 82.35% of the samples with serogroup B while, FP2 was depicted by rest (17.65%) of the samples. Though the FP1 fimA sequence had the homology of 95% to D. nodosus fimA of serotype B4 isolate VRS 54, but there were 14 nucleotide differences and four nucleotide insertions/deletions in the coding sequence between these two strains resulting in eight amino acid substitutions in the fimbrial subunit. Similarly the FP2 fimA showed the sequence homology of 97% with D. nodosus fimA of serotype B2 isolate 183, with 10 nucleotide differences and three nucleotide insertions/deletions between these two sequences. This resulted in six amino acid substitutions, plus an amino acid length variation in the subunit protein. Thus it was presumed that these FP1 and FP2 strains represented new serotypes (B5 and B6, correspondingly) within the B serogroup as the degree of amino acid sequence difference with their nearest homologous strains was much greater than that within a serotype (0-5 amino acid differences), but comparable to that between serotypes (8-15 amino acid differences). This presumption was confirmed by cross tube agglutination test.  相似文献   

9.
H J Cohen  S M Mechanda    W Lin 《Applied microbiology》1996,62(12):4303-4308
The goal of this study was to evaluate the suitability of the fimA gene amplification by PCR as a specific method for detection of Salmonella strains. Salmonella typhimurium and other pathogenic members of the family Enterobacteriaceae produce morphologically and antigenically related, thin, aggregative, type 1 fimbriae. A single gene, fimA, encodes the major fimbrial unit. In order to obtain higher specificity, we have selected a series of primers internal to the fimA gene sequence and have developed a PCR method for detecting Salmonella strains. A collection of 376 strains of Salmonella comprising over 80 serovars, isolated from animals and humans in Canada, have been used to evaluate this PCR method. Forty non-Salmonella strains were also tested by the same procedure. Cultures were screened by inoculating a single colony of bacteria directly into a PCR mixture containing a pair of primers specific for the fimA gene. The specific PCR product is an 85-bp fragment which was visualized by polyacrylamide gel electrophoresis and ethidium bromide staining. All Salmonella strains gave positive results by the PCR. Feed and milk samples contaminated by Salmonella strains were also detected by this procedure. The detection of all Salmonella strains tested and the failure to amplify the fragment from non-Salmonella strains confirm that the fimA gene contains sequences unique to Salmonella strains and demonstrate that this gene is a suitable PCR target for detection of Salmonella strains in food samples.  相似文献   

10.
11.
Abstract The fimA gene coding for the major component (fimbrin) of type 1 fimbriae was mapped within the Salmonella typhi fim gene cluster, and its nucleotide sequence determined. The deduced amino acid sequence of S. typhi fimbrin is highly homologous to that of S. typhimurium type 1 fimbrin and showed similarity to that of other enterobacterial type 1 fimbrins. Downstream of fimA , an open reading frame was found, named fimI , able to encode a fimbrin-like protein. The fimI product could represent the counterpart, in type 1 fimbriae, of the PapH protein involved in cell anchoring and length modulation of Escherichia coli Pap pili. This genetic organization was found to be common to other Salmonella serovars, including S. typhimurium and S. choleraesuis .  相似文献   

12.
Abstract Immunochemical specificity of lipopolysaccharide an the molecular property of the gene encoding the fimbrilin ( fimA ) of Porphyromonas gingivalis strains were examined using 'fimbriated' strains 381 and HG564 and 'non-fimbriated' strains 381FL and W50. Lipopolysaccharide from strains 381, 381FL and HG564 reacted with monoclonal antibody raised to lipopolysaccharide from strain 381 to give a fused precipitin band by the immunodiffusion test. However, silver staining and Western blotting of lipopolysaccharide clearly revealed a difference in profile of bands between strains 381 and 381FL. On the other hand, lipopolysaccharide from W50 formed another precipitin band and reacted with the antibody, but only at higher concentrations of lipopolysaccharide. The fimA genes in these strains were amplified by polymerase chain reaction and cloned. Sequencing of the fimA gene revealed thatthe fimA (W50) was almost identical to fimA (HG564), but a notable difference was observed at the start codon of the open reading frame, while the fimA (381FL) was considerably different from fimA of other strains and its open reading frame was found to be missing. These results indicate that the molecular structure of the fimA genes of these strains is not homologous, indicating that moe molecular modifications in the fimA gene should occur during in vitro passages and maintenance of strains of P. gingivalis in laboratories.  相似文献   

13.
14.
A sensitive and specific detection method was developed for Xanthomonas hyacinthi; this method was based on amplification of a subsequence of the type IV fimbrial-subunit gene fimA from strain S148. The fimA gene was amplified by PCR with degenerate DNA primers designed by using the N-terminal and C-terminal amino acid sequences of trypsin fragments of FimA. The nucleotide sequence of fimA was determined and compared with the nucleotide sequences coding for the fimbrial subunits in other type IV fimbria-producing bacteria, such as Xanthomonas campestris pv. vesicatoria, Neisseria gonorrhoeae, and Moraxella bovis. In a PCR internal primers JAAN and JARA, designed by using the nucleotide sequences of the variable central and C-terminal region of fimA, amplified a 226-bp DNA fragment in all X. hyacinthi isolates. This PCR was shown to be pathovar specific, as assessed by testing 71 Xanthomonas pathovars and bacterial isolates belonging to other genera, such as Erwinia and Pseudomonas. Southern hybridization experiments performed with the labelled 226-bp DNA amplicon as a probe suggested that there is only one structural type IV fimbrial-gene cluster in X. hyacinthi. Only two Xanthomonas translucens pathovars cross-reacted weakly in PCR. Primers amplifying a subsequence of the fimA gene of X. campestris pv. vesicatoria (T. Ojanen-Reuhs, N. Kalkkinen, B. Westerlund-Wikstr?m, J. van Doorn, K. Haahtela, E.-L. Nurmiaho-Lassila, K. Wengelink, U. Bonas, and T. K. Korhonen, J. Bacteriol. 179: 1280-1290, 1997) were shown to be pathovar specific, indicating that the fimbrial-subunit sequences are more generally applicable in xanthomonads for detection purposes. Under laboratory conditions, approximately 1,000 CFU of X. hyacinthi per ml could be detected. In inoculated leaves of hyacinths the threshold was 5,000 CFU/ml. The results indicated that infected hyacinths with early symptoms could be successfully screened for X. hyacinthi with PCR.  相似文献   

15.
Porphyromonas gingivalis is a periodontal pathogen whose fimbriae are classified into six genotypes based on the diversity of the fimA genes encoding each fimbria subunit. It was suggested that P. gingivalis strains with type II fimbriae were more virulent than type I strains. For the present study, we generated the mutants in which fimA was substituted with different genotypes to study virulence of type II fimbriae. Using plasmid vectors, fimA of ATCC33277 (type I strain) was substituted with type II fimA, and that of OMZ314 (type II strain) with type I fimA. The substitution of type I fimA with type II enhanced bacterial adhesion/invasion to epithelial cells, whereas substitution with type I fimA resulted in diminished efficiency. Following bacterial invasion, type II clones swiftly degraded cellular paxillin and focal adhesion kinase, and inhibited cellular migration, whereas type I clones and DeltafimA mutants did not. BIAcore analysis demonstrated that type II fimbriae possess greater adhesive abilities for their receptor alpha5beta1-integrin than those of type I. In a mouse abscess model, the type II clones significantly induced serum IL-1beta and IL-6, as well as other infectious symptoms. These results suggest that type II fimbriae are a critical determinant of P. gingivalis virulence.  相似文献   

16.
17.
It has been reported that a large majority of periodontitis patients carry organisms with either type II or IV-fimA, while type I is the most prevalent fimA genotype among Porphyromonas gingivalis-positive healthy adults. Here we report characterization of recombinant fimbrial protein (rFimA) produced in Escherichia coli from genotype IV-fimA. In SDS-PAGE and immunoblot analysis after partial dissociation, type IV-rFimA showed a ladder-like pattern representing oligomeric/polymeric forms of native fimbrial structure. Unlike anti-type I-native fimbriae which can only recognize conformational epitopes of the respective proteins, both anti-type IV-native fimbriae and anti-type IV-rFimA antibodies recognized conformational as well as linear epitopes in type IV-fimbriae. These results suggest that the type IV-rFimA proteins retain the native fimbrial antigenicity and the antigenicity of type IV-fimbriae is different from that of type I-fimbriae.  相似文献   

18.
The nucleotide sequence was determined of a region of 1450 base pairs encompassing the fimA gene for the subunit of type 1 fimbriae of Escherichia coli as well as flanking regions containing potential regulator sequences. The 'translated' protein contains a 23-residue signal peptide; the processed fimbrial subunit consists of 158 amino acid residues yielding a relative molecular mass of 15706. The elucidated sequence shows significant homology with those of other E. coli fimbrial proteins.  相似文献   

19.
Regulation of the gene, fimA, encoding the major fimbrial subunit of S. typhimurium S6704 was examined by using a lambda fimA-lacZ lysogen. Transformation of the lambda fimA-lacZ lysogen with various derivatives of the recombinant plasmid that encodes type 1 fimbrial expression, pISF101, indicated that two regions of this plasmid alter beta-galactosidase production. One plasmid is a deletion resulting in the loss of a 28-kDa polypeptide downstream of fimA, while the other plasmid encodes a 24- and a 27-kDa polypeptide. Northern (RNA) blot analyses indicated that the steady-state fimA mRNA levels of these transformants were high. In addition, phenotypic expression of type 1 fimbriae by agar-grown cultures is observed only in those transformants bearing plasmids which show increased beta-galactosidase and fimA mRNA levels.  相似文献   

20.
The periodontal pathogen Porphyromonas gingivalis colonizes largely through FimA fimbriae, composed of polymerized FimA encoded by fimA. fimA exists as a single copy within the fim gene cluster (fim cluster), which consists of seven genes: fimX, pgmA and fimA-E. Using an expression vector, fimA alone was inserted into a mutant from which the whole fim cluster was deleted, and the resultant complement exhibited a fimbrial structure. Thus, the genes of the fim cluster other than fimA were not essential for the assembly of FimA fimbriae, although they were reported to influence FimA protein expression. It is known that there are various genotypes for fimA, and it was indicated that the genotype was related to the morphological features of FimA fimbriae, especially the length, and to the pathogenicity of the bacterium. We next complemented the fim cluster-deletion mutant with fimA genes cloned from P. gingivalis strains including genotypes I to V. All genotypes showed a long fimbrial structure, indicating that FimA itself had nothing to do with regulation of the fimbrial length. In FimA fimbriae purified from the complemented strains, types I, II, and III showed slightly higher thermostability than types IV and V. Antisera of mice immunized with each purified fimbria principally recognized the polymeric, structural conformation of the fimbriae, and showed low cross-reactivity among genotypes, indicating that FimA fimbriae of each genotype were antigenically different. Additionally, the activity of a macrophage cell line stimulated with the purified fimbriae was much lower than that induced by Escherichia coli lipopolysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号