首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drug use typically occurs within a social context, and social factors play an important role in the initiation, maintenance and recovery from addictions. There is now accumulating evidence of an interaction between the neural substrates of affiliative behavior and those of drug reward, with a role for brain oxytocin systems in modulating acute and long-term drug effects. Early research in this field indicated that exogenous oxytocin administration can prevent development of tolerance to ethanol and opiates, the induction of stereotyped, hyperactive behavior by stimulants, and the withdrawal symptoms associated with sudden abstinence from drugs and alcohol. Additionally, stimulation of endogenous oxytocin systems is a key neurochemical substrate underlying the prosocial and empathogenic effects of party drugs such as MDMA (Ecstasy) and GHB (Fantasy). Brain oxytocin systems exhibit profound neuroplasticity and undergo major neuroadaptations as a result of drug exposure. Many drugs, including cocaine, opiates, alcohol, cannabis, MDMA and GHB cause long-term changes in markers of oxytocin function and this may be linked to enduring deficits in social behavior that are commonly observed in laboratory animals repeatedly exposed to these drugs. Very recent preclinical studies have illustrated a remarkable ability of exogenously delivered oxytocin to inhibit stimulant and alcohol self-administration, to alter associated drug-induced changes in dopamine, glutamate and Fos expression in cortical and basal ganglia sites, and to prevent stress and priming-induced relapse to drug seeking. Oxytocin therefore has fascinating potential to reverse the corrosive effects of long-term drugs abuse on social behavior and to perhaps inoculate against future vulnerability to addictive disorders. The results of clinical studies examining intranasal oxytocin effects in humans with drug use disorders are eagerly awaited. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

2.
Understanding the interaction between fear and reward at the circuit and molecular levels has implications for basic scientific approaches to memory and for understanding the etiology of psychiatric disorders. Both stress and exposure to drugs of abuse induce epigenetic changes that result in persistent behavioral changes, some of which may contribute to the formation of a drug addiction or a stress‐related psychiatric disorder. Converging evidence suggests that similar behavioral, neurobiological and molecular mechanisms control the extinction of learned fear and drug‐seeking responses. This may, in part, account for the fact that individuals with post‐traumatic stress disorder have a significantly elevated risk of developing a substance use disorder and have high rates of relapse to drugs of abuse, even after long periods of abstinence. At the behavioral level, a major challenge in treatments is that extinguished behavior is often not persistent, returning with changes in context, the passage of time or exposure to mild stressors. A common goal of treatments is therefore to weaken the ability of stressors to induce relapse. With the discovery of epigenetic mechanisms that create persistent molecular signals, recent work on extinction has focused on how modulating these epigenetic targets can create lasting extinction of fear or drug‐seeking behavior. Here, we review recent evidence pointing to common behavioral, systems and epigenetic mechanisms in the regulation of fear and drug seeking. We suggest that targeting these mechanisms in combination with behavioral therapy may promote treatment and weaken stress‐induced relapse.  相似文献   

3.
Sensory systems play an important role in cocaine addiction, perhaps most clearly demonstrated when stimuli (‘cues’) associated via classical conditioning with the effects of the drug, trigger craving and relapse. It has been shown in previous studies that administration of cocaine can enhance evoked responses in the primary sensory cortex of experimental animals. Given that the speed of learning in classical conditioning is affected by the intensity of the conditioned stimulus (CS), and that cocaine enhances the neural representation of sensory stimuli in the primary sensory cortex in a manner similar to an increase in intensity, we hypothesise that cue-induced craving in human addicts is facilitated by the drug. In short, cocaine speeds the process that leads to craving. This hypothesis is supported by the fact that cocaine enhances sensory responses in humans and leads to an improvement in attention (the putative intermediary between enhanced sensory responses and facilitated learning). Furthermore, cocaine affects neural loci which are known to play a role in learning and facilitates classical conditioning when present during acquisition. In addition, related drugs like d-amphetamine and ecstasy (which themselves produce craving) affect sensory processing and attention, and in the case of d-amphetamine facilitate human learning. It is therefore possible that cocaine itself plays a – previously under-appreciated – role in the formation of associations between drug and drug-related environmental cues by enhancing primary sensory responses. A corollary of this is that, as with other intense CSs, the established association may be particularly resistant to extinction, potentially explaining why cues continue to elicit craving months or even years after the last cocaine use.  相似文献   

4.
A cannabinoid mechanism in relapse to cocaine seeking   总被引:21,自引:0,他引:21  
Treatment of cocaine addiction is hampered by high rates of relapse even after prolonged drug abstinence. This relapse to compulsive cocaine use can be triggered by re-exposure to cocaine, by re-exposure to stimuli previously associated with cocaine or by exposure to stress. In laboratory rats, similar events reinstate cocaine seeking after prolonged withdrawal periods, thus providing a model to study neuronal mechanisms underlying the relapse to cocaine. The endocannabinoid system has been implicated in a number of neuropsychiatric conditions, including drug addiction. The active ingredient of marijuana, Delta9-tetrahydrocannabinol, activates the mesolimbic dopamine (DA) reward system and has rewarding effects in preclinical models of drug abuse. We report here that the synthetic cannabinoid agonist, HU210 (ref. 13), provokes relapse to cocaine seeking after prolonged withdrawal periods. Furthermore, the selective CB1 receptor antagonist, SR141716A (ref. 14), attenuates relapse induced by re-exposure to cocaine-associated cues or cocaine itself, but not relapse induced by exposure to stress. These data reveal an important role of the cannabinoid system in the neuronal processes underlying relapse to cocaine seeking, and provide a rationale for the use of cannabinoid receptor antagonists for the prevention of relapse to cocaine use.  相似文献   

5.
Addiction is a complex disorder because many factors contribute to the development and maintenance of addiction. One factor is learning. For example, drug-context associations that develop during drug use could facilitate drug craving upon re-exposure to contexts previously associated with drugs. Additionally, deficits in cognitive processes associated with withdrawal could precipitate relapse in attempts to ameliorate those deficits. Because addiction and learning involve common neural areas and cell signaling cascades, addiction-related changes in processes underlying plasticity may contribute to addiction. This article examines similarities between addiction and learning at the behavioral, neural, and cellular levels, with emphasis on the neural substrates underlying the effects of acute nicotine, chronic nicotine, and withdrawal from chronic nicotine on hippocampus-dependent contextual, learning.  相似文献   

6.
People take addictive drugs to elevate mood, but with repeated use these drugs produce serious unwanted effects, which can include tolerance to some drug effects, sensitization to others, and an adapted state - dependence - which sets the stage for withdrawal symptoms when drug use stops. The most serious consequence of repetitive drug taking, however, is addiction: a persistent state in which compulsive drug use escapes control, even when serious negative consequences ensue. Addiction is characterized by a long-lasting risk of relapse, which is often initiated by exposure to drug-related cues. Substantial progress has been made in understanding the molecular and cellular mechanisms of tolerance, dependence and withdrawal, but as yet we understand little of the neural substrates of compulsive drug use and its remarkable persistence. Here we review evidence for the possibility that compulsion and its persistence are based on a pathological usurpation of molecular mechanisms that are normally involved in memory.  相似文献   

7.
Exposure to drugs early in life has complex and long‐lasting implications for brain structure and function. This review summarizes work to date on the immediate and long‐term effects of prenatal exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, particularly dopamine, during sensitive periods of brain development, and leads to permanent changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and significance with mechanistic preclinical studies, to define our current knowledge base and identify gaps for future investigation. Birth Defects Research (Part C) 108:147–173, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Hypocretins (also known as orexins) are hypothalamic neuropeptides involved in the regulation of sleep/wake states and feeding behavior. Recent studies have also demonstrated an important role for the hypocretin/orexin system in the addictive properties of drugs of abuse, consistent with the reciprocal innervations between hypocretin neurons and brain areas involved in reward processing. This system participates in the primary reinforcing effects of opioids, nicotine, and alcohol. Hypocretins are also involved in the neurobiological mechanisms underlying relapse to drug-seeking behavior induced by drug-related environmental stimuli and stress, as mainly described in the case of psychostimulants. Based on these preclinical studies, the use of selective ligands targeting hypocretin receptors could represent a new therapeutical strategy for the treatment of substance abuse disorders. In this review, we discuss and update the current knowledge about the participation of the hypocretin system in drug addiction and the possible neurobiological mechanisms involved in these processes regulated by hypocretin transmission.  相似文献   

9.
Chronic use of drugs of abuse results in neurochemical, morphological and behavioral plasticity that underlies the emergence of compulsive drug seeking and vulnerability to relapse during periods of attempted abstinence. Identifying and reversing addiction‐relevant plasticity is seen as a potential point of pharmacotherapeutic intervention in drug‐addicted individuals. Despite considerable advances in our understanding of the actions of drugs of abuse in the brain, this information has thus far yielded few novel treatment options addicted individuals. MicroRNAs are small noncoding RNAs that can each regulate the translation of hundreds to thousands of messenger RNAs. The highly pleiotropic nature of miRNAs has focused attention on their contribution to addiction‐relevant structural and functional plasticity in the brain and their potential utility as targets for medications development. In this review, we discuss the roles of miRNAs in synaptic plasticity underlying the development of addiction and then briefly discuss the possibility of using circulating miRNA as biomarkers for addiction.  相似文献   

10.
Addictive behavior developes after repeated substance use and it typically include a strong desire to take the drug, difficulties in controlling its use, persisting in its use despite harmful consequences, a higher priority given to the drug use than to other activities. Relapse, the resumption of drug taking after periods of abstinence, remains the major problem for the treatment of addiction. The process of drug addiction shares striking commonalities with neural plasticity associated with natural reward learning and memory and is caused primarily by drug-induced sensitization in the brain mesocorticolimbic systems that attribute incentive salience to reward-associated stimuli. The switch from controlled to compulsive drug seeking represents a transition at the neural level from prefrontal cortical to striatal control. Current neurophysiologic evidence suggests that the development of addiction is to some extent due to neurochemical stimulation of the midbrain dopaminergic system that is traditionally considered as a 'common neural currency' for rewards of most kinds. Addictions are a result of the interplay of multiple genetic and environmental factors. They are characterized by phenotypic and genetic heterogeneity as well as polygenicity. Environmental factors are crucial in addiction vulnerability and resistese too.  相似文献   

11.
Addiction-associated behaviors such as drug craving and relapse are hypothesized to result from synaptic changes that persist long after withdrawal and are renormalized by drug reinstatement, although such chronic synaptic effects have not been identified. We report that exposure to the dopamine releaser methamphetamine for 10 days elicits a long-lasting (>4 month) depression at corticostriatal terminals that is reversed by methamphetamine readministration. Both methamphetamine-induced chronic presynaptic depression and the drug's selective renormalization in drug-experienced animals are independent of corresponding long-term changes in synaptic dopamine release but are due to alterations in D1 dopamine and cholinergic receptor systems. These mechanisms might provide a synaptic basis that underlies addiction and habit learning and their long-term maintenance.  相似文献   

12.
With no further intervention, relapse rates in detoxified alcoholics are high and usually exceed 80% of all detoxified patients. It has been suggested that stress and exposure to priming doses of alcohol and to alcohol-associated stimuli (cues) contribute to the relapse risk after detoxification. This article focuses on neuronal correlates of cue responses in detoxified alcoholics. Current brain imaging studies indicate that dysfunction of dopaminergic, glutamatergic and opioidergic neurotransmission in the brain reward system (ventral striatum including the nucleus accumbens) can be associated with alcohol craving and functional brain activation in neuronal systems that process attentional relevant stimuli, reward expectancy and experience. Increased functional brain activation elicited by such alcohol-associated cues predicted an increased relapse risk, whereas high brain activity elicited by affectively positive stimuli may represent a protective factor and was correlated with a decreased prospective relapse risk. These findings are discussed with respect to psychotherapeutic and pharmacological treatment options.  相似文献   

13.
14.
Glutamate is the principal excitatory neurotransmitter in the central nervous system and its actions are related to the behavioral effects of psychostimulant drugs. In the last two decades, basic neuroscience research and preclinical studies with animal models are suggesting a critical role for glutamate transmission in drug reward, reinforcement, and relapse. Although most of the interest has been centered in post-synaptic glutamate receptors, the presynaptic synthesis of glutamate through brain glutaminases may also contribute to imbalances in glutamate homeostasis, a key feature of the glutamatergic hypothesis of addiction. Glutaminases are the main glutamate-producing enzymes in brain and dysregulation of their function have been associated with neurodegenerative diseases and neurological disorders; however, the possible implication of these enzymes in drug addiction remains largely unknown. This mini-review focuses on brain glutaminase isozymes and their alterations by in vivo exposure to drugs of abuse, which are discussed in the context of the glutamate homeostasis theory of addiction. Recent findings from mouse models have shown that drugs induce changes in the expression profiles of key glutamatergic transmission genes, although the molecular mechanisms that regulate drug-induced neuronal sensitization and behavioral plasticity are not clear.  相似文献   

15.
Recent advances in MR-based brain imaging methods have provided unprecedented capabilities to visualize the brain. Application of these methods has allowed identification of brain structures and patterns of functional activation altered in offspring of mothers who used licit (e.g., alcohol and tobacco) and illicit (e.g., cocaine, methamphetamine, and marijuana) drugs during pregnancy. Here we review that literature, which though somewhat limited by the complexities of separating the specific effects of each drug from other confounding variables, points to sets of interconnected brain structures as being altered following prenatal exposure to drugs of abuse. In particular, dopamine-rich cortical (e.g., frontal cortex) and subcortical (e.g., basal ganglia) fetal brain structures show evidence of vulnerability to intrauterine drug exposure suggesting that during brain development drugs of abuse share a specific profile of developmental neurotoxicity. Such brain malformations may shed light on mechanisms underlying prenatal drug-induced brain injury, may serve as bio-markers of significant intrauterine drug exposure, and may additionally be predictors of subsequent neuro-developmental compromise. Wider clinical use of these research-based non-invasive methods will allow for improved diagnosis and allocation of therapeutic resources for affected infants, children, and young adults.  相似文献   

16.
The contexts where drugs are self‐administered play an important role in regulating persistent drug taking and in relapse to such taking after periods of abstinence. Here, we review the behavioral and brain mechanisms enabling contexts to promote and prevent relapse to drug seeking. We review the key brain structures, their neuropharmacology and their connectivity. We discuss the similarities and differences between the mechanisms for context‐induced reinstatement of drug seeking vs. other forms of relapse to drug seeking in animal models and we highlight the numerous deficits in our understanding. We emphasize that current understanding, although significant, defies explanations in terms of models at the level of brain structures and their connectivity. Rather, we show that there is significant functional compartmentalization and segregation within these structures during reinstatement and extinction of drug seeking that parallels their anatomical segregation into circuits and channels. A key challenge is to recognize this complexity, understand how these circuits and channels are organized, as well as understand how different modes of activity of ensembles of neurons within them promote abstinence or relapse to drug seeking.  相似文献   

17.
18.
Clinical observations and the results of animal studies have implicated changes in neuronal survival and plasticity in both the etiology of mood disorders, especially stress-induced depression, and anti-depressant drug action. Stress may predispose individuals toward depression through down-regulation of neurogenesis and an increase in apoptosis in the brain. Substantial individual differences in vulnerability to stress are evident in humans and were found in experimental animals. Recent studies revealed an association between the brain anti-apoptotic protein B cell lymphoma like X, long variant (Bcl-xL) expression and individual differences in behavioral vulnerability to stress. The ability to increase Bcl-xL gene expression in the hippocampus in response to stress may be an important factor for determining the resistance to the development of stress-induced depression. Treatment with anti-depressant drugs may change Bcl-xL response properties. In the rat brainstem, expression of this anti-apoptotic gene becomes sensitive to swim stress during the long-term fluoxetine treatment, an effect that appeared concomitantly with the anti-depressant-like action of the drug in the forced swim test, suggesting that Bcl-xL may be a new target for depression therapy. The processes and pathways linking stress stimuli to behavior via intracellular anti-apoptotic protein are discussed here in the context of Bcl-xL functions in the mechanisms of individual differences in behavioral resilience to stress and anti-depressant-induced effects on the behavioral despair.  相似文献   

19.
A consistent finding in drug abuse research is that males and females show differences in their response to drugs of abuse. In women, increased plasma estradiol is associated with increased vulnerability to the psychostimulant and reinforcing effects of drugs of abuse. Our laboratory has focused on the role of estradiol in modulating the response to cocaine. We have seen that ovariectomy increases the locomotor response to a single cocaine injection, whereas estradiol exacerbates the locomotor response to repeated cocaine administration. Cocaine-induced sensitization of brain activity, as measured by fMRI, is also dependent on plasma estradiol. Moreover, we observed that although all ovariectomized rats show conditioned place preference to cocaine, it is more robust in ovariectomized rats with estradiol.Opioid receptors are enriched in brain regions associated with pleasure and reward. We find that in females, the effectiveness of kappa opioid agonists in decreasing the locomotor response to repeated cocaine varies with plasma estradiol. We also find that estradiol regulates the density of mu opioid receptors in brains areas associated with reward. These data hint that in females, estradiol modulates the behavioral effects of cocaine by regulating mu and kappa opioid signaling in mesocorticolimbic brain structures. Identifying the mechanisms that mediate differences in vulnerability to drugs of abuse may lead to effective therapeutic strategies for the treatment and prevention of addiction and relapse. We encourage health practitioners treating persons addicted to drugs to consider gender differences in response to particular pharmacotherapies, as well the sex steroid milieu of the patient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号