首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent evidence indicates that continuous wakefulness (sleep deprivation, SD) causes impairments in behavioral performance and hippocampal long-term potentiation (LTP) in animals. However, the mechanisms by which SD impairs long-term synaptic plasticity and cognitive function are not clear. Here, we report that 24-h SD in mice results in impaired hippocampus-dependent contextual memory and LTP and, unexpectedly, in reductions of the surface expression of NMDA receptor (NMDAR) subunit NR1 and NMDAR-mediated excitatory post-synaptic currents at hippocampal perforant path-dentate granule cell synapses. The results suggest that the reduction of functional NMDAR in hippocampal neurons may underlie the SD-induced deficits in hippocampus-dependent contextual memory and long-term synaptic plasticity.  相似文献   

2.
Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long‐term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging‐related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long‐term potentiation (LTP), in age‐related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82‐ to 84‐week‐old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani‐induced and dopaminergic agonist‐induced late‐LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell‐permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell‐permeable chelating agents.  相似文献   

3.
Reactive oxygen species (ROS) are required in a number of critical cellular signaling events, including those underlying hippocampal synaptic plasticity and hippocampus-dependent memory; however, the source of ROS is unknown. We previously have shown that NADPH oxidase is required for N-methyl-D-aspartate (NMDA) receptor-dependent signal transduction in the hippocampus, suggesting that NADPH oxidase may be required for NMDA receptor-dependent long-term potentiation (LTP) and hippocampus-dependent memory. Herein we present the first evidence that NADPH oxidase is involved in hippocampal synaptic plasticity and memory. We have found that pharmacological inhibitors of NADPH oxidase block LTP. Moreover, mice that lack the NADPH oxidase proteins gp91(phox) and p47(phox), both of which are mouse models of human chronic granulomatous disease (CGD), also lack LTP. We also found that the gp91(phox) and p47(phox) mutant mice have mild impairments in hippocampus-dependent memory. The gp91(phox) mutant mice exhibited a spatial memory deficit in the Morris water maze, and the p47(phox) mutant mice exhibited impaired context-dependent fear memory. Taken together, our results are consistent with NADPH oxidase being required for hippocampal synaptic plasticity and memory and are consistent with reports of cognitive dysfunction in patients with CGD.  相似文献   

4.
Do stress and long-term potentiation share the same molecular mechanisms?   总被引:2,自引:0,他引:2  
Stress is a biological, significant factor shown to influence hippocampal synaptic plasticity and cognitive functions. Although numerous studies have reported that stress produces a suppression in long-term potentiation (LTP; a putative synaptic mechanism underlying learning and memory), little is known about the mechanism by which this occurs. Because the effects of stress on LTP and its converse process, long-term depression (LTD), parallel the changes in synapticity that occur following the establishment of LTP with tetanic stimulation (i.e., occluding LTP and enhancing LTD induction), it has been proposed that stress affects subsequent hippocampal plasticity by sharing the same molecular machinery required to support LTP. This article summarizes recent findings from ours and other laboratories to assess this view and discusses relevant hypotheses in the study of stress-related modifications of synaptic plasticity.  相似文献   

5.
Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.  相似文献   

6.
Heavy episodic drinking early in adolescence is associated with increased risk of addiction and other stress-related disorders later in life. This suggests that adolescent alcohol abuse is an early marker of innate vulnerability and/or binge exposure impacts the developing brain to increase vulnerability to these disorders in adulthood. Animal models are ideal for clarifying the relationship between adolescent and adult alcohol abuse, but we show that methods of involuntary alcohol exposure are not effective. We describe an operant model that uses multiple bouts of intermittent access to sweetened alcohol to elicit voluntary binge alcohol drinking early in adolescence (~postnatal days 28-42) in genetically heterogeneous male Wistar rats. We next examined the effects of adolescent binge drinking on alcohol drinking and anxiety-like behavior in dependent and non-dependent adult rats, and counted corticotropin-releasing factor (CRF) cell in the lateral portion of the central amygdala (CeA), a region that contributes to regulation of anxiety- and alcohol-related behaviors. Adolescent binge drinking did not alter alcohol drinking under baseline drinking conditions in adulthood. However, alcohol-dependent and non-dependent adult rats with a history of adolescent alcohol binge drinking did exhibit increased alcohol drinking when access to alcohol was intermittent. Adult rats that binged alcohol during adolescence exhibited increased exploration on the open arms of the elevated plus maze (possibly indicating either decreased anxiety or increased impulsivity), an effect that was reversed by a history of alcohol dependence during adulthood. Finally, CRF cell counts were reduced in the lateral CeA of rats with adolescent alcohol binge history, suggesting semi-permanent changes in the limbic stress peptide system with this treatment. These data suggest that voluntary binge drinking during early adolescence produces long-lasting neural and behavioral effects with implications for anxiety and alcohol use disorders.  相似文献   

7.
The discovery of long-term potentiation (LTP) transformed research on the neurobiology of learning and memory. This did not happen overnight, but the discovery of an experimentally demonstrable phenomenon reflecting activity-driven neuronal and synaptic plasticity changed discussions about what might underlie learning from speculation into something much more concrete. Equally, however, the relationship between the discovery of LTP and research on the neurobiology of learning and memory has been reciprocal; for it is also true that studies of the psychological, anatomical and neurochemical basis of memory provided a developing and critical intellectual context for the physiological discovery. The emerging concept of multiple memory systems, from 1970 onwards, paved the way for the development of new behavioural and cognitive tasks, including the watermaze described in this paper. The use of this task in turn provided key evidence that pharmacological interference with an LTP induction mechanism would also interfere with learning, a finding that was by no means a foregone conclusion. This reciprocal relationship between studies of LTP and the neurobiology of memory helped the physiological phenomenon to be recognized as a major discovery.  相似文献   

8.
Alzheimer’s disease (AD) is characterized by profound synapse loss and impairments of learning and memory. Magnesium affects many biochemical mechanisms that are vital for neuronal properties and synaptic plasticity. Recent studies have demonstrated that the serum and brain magnesium levels are decreased in AD patients; however, the exact role of magnesium in AD pathogenesis remains unclear. Here, we found that the intraperitoneal administration of magnesium sulfate increased the brain magnesium levels and protected learning and memory capacities in streptozotocin-induced sporadic AD model rats. We also found that magnesium sulfate reversed impairments in long-term potentiation (LTP), dendritic abnormalities, and the impaired recruitment of synaptic proteins. Magnesium sulfate treatment also decreased tau hyperphosphorylation by increasing the inhibitory phosphorylation of GSK-3β at serine 9, thereby increasing the activity of Akt at Ser473 and PI3K at Tyr458/199, and improving insulin sensitivity. We conclude that magnesium treatment protects cognitive function and synaptic plasticity by inhibiting GSK-3β in sporadic AD model rats, which suggests a potential role for magnesium in AD therapy.  相似文献   

9.
Long-term, activity-driven synaptic plasticity allows neuronal networks to constantly and durably adjust synaptic gains between synaptic partners. These processes have been proposed to serve as a substrate for learning and memory. Long-term synaptic potentiation (LTP) has been observed at many central excitatory synapses and perhaps most extensively studied at Schaffer collaterals synapses onto hippocampal CA1 neurons. Multiple contradictory models were proposed to account for this form of LTP. However, recent evidence suggests that some synapses are initially devoid of functional AMPA receptors which can be incorporated during LTP. This new model appears to account for most, but not all, properties of this form of plasticity. Indeed, several mechanisms seem to act in parallel to specifically enhance AMPA-receptor mediated synaptic transmission.  相似文献   

10.
There is considerable evidence showing that the neurodegenerative processes that lead to sporadic Parkinson''s disease (PD) begin many years before the appearance of the characteristic motor symptoms. Neuropsychiatric, sensorial and cognitive deficits are recognized as early non-motor manifestations of PD, and are not attenuated by the current anti-parkinsonian therapy. Although loss-of-function mutations in the parkin gene cause early-onset familial PD, Parkin-deficient mice do not display spontaneous degeneration of the nigrostriatal pathway or enhanced vulnerability to dopaminergic neurotoxins such as 6-OHDA and MPTP. Here, we employed adult homozygous C57BL/6 mice with parkin gene deletion on exon 3 (parkin −/−) to further investigate the relevance of Parkin in the regulation of non-motor features, namely olfactory, emotional, cognitive and hippocampal synaptic plasticity. Parkin −/− mice displayed normal performance on behavioral tests evaluating olfaction (olfactory discrimination), anxiety (elevated plus-maze), depressive-like behavior (forced swimming and tail suspension) and motor function (rotarod, grasping strength and pole). However, parkin −/− mice displayed a poor performance in the open field habituation, object location and modified Y-maze tasks suggestive of procedural and short-term spatial memory deficits. These behavioral impairments were accompanied by impaired hippocampal long-term potentiation (LTP). These findings indicate that the genetic deletion of parkin causes deficiencies in hippocampal synaptic plasticity, resulting in memory deficits with no major olfactory, emotional or motor impairments. Therefore, parkin −/− mice may represent a promising animal model to study the early stages of PD and for testing new therapeutic strategies to restore learning and memory and synaptic plasticity impairments in PD.  相似文献   

11.

Background

Deficits in information processing may be a core deficit after fetal alcohol exposure. This study was designed to investigate the possible effects of weekly low to moderate maternal alcohol consumption and binge drinking episodes in early pregnancy on choice reaction time (CRT) and information processing time (IPT) in young children.

Method

Participants were sampled based on maternal alcohol consumption during pregnancy. At the age of 60–64 months, 1,333 children were administered a modified version of the Sternberg paradigm to assess CRT and IPT. In addition, a test of general intelligence (WPPSI-R) was administered.

Results

Adjusted for a wide range of potential confounders, this study showed no significant effects of average weekly maternal alcohol consumption during pregnancy on CRT or IPT. There was, however, an indication of slower CRT associated with binge drinking episodes in gestational weeks 1–4.

Conclusion

This study observed no significant effects of average weekly maternal alcohol consumption during pregnancy on CRT or IPT as assessed by the Sternberg paradigm. However, there were some indications of CRT being associated with binge drinking during very early pregnancy. Further large-scale studies are needed to investigate effects of different patterns of maternal alcohol consumption on basic cognitive processes in offspring.  相似文献   

12.
It is increasingly evident that matrix metalloproteinases (MMPs), a family of zinc containing extracellular endopeptidases, participate in processes supporting hippocampal synaptic plasticity. The purpose of this study was to further the understanding of MMPs involvement in hippocampal plasticity. Acute hippocampal slices, generated from 20- to 30-day-old male Sprague-Dawley rats, were subjected to various electrophysiologic stimulatory paradigms to produce either short-term or long-term modifications to synaptic efficacy. Slices exposed to broad-spectrum MMP inhibitor, FN-439, exhibited impairments in paired-pulse facilitation, theta-burst facilitation, and long-term depression. Additionally, we observed that MMP inhibition impaired both the induction and stability of long-term potentiation (LTP). Furthermore, evidence indicated that the effect of MMP inhibition on LTP maintenance is dependent upon integrin-directed adhesion, whereas the effects of MMP inhibition on LTP induction are independent of integrin-directed adhesion. Together, these data support a generalized role for MMPs in short-term and long-term hippocampal plasticity and indicate that MMPs are a necessary facet of integrin-mediated cell adhesion supporting LTP stabilization.  相似文献   

13.
Neural plasticity in the ageing brain   总被引:1,自引:0,他引:1  
The mechanisms involved in plasticity in the nervous system are thought to support cognition, and some of these processes are affected during normal ageing. Notably, cognitive functions that rely on the medial temporal lobe and prefrontal cortex, such as learning, memory and executive function, show considerable age-related decline. It is therefore not surprising that several neural mechanisms in these brain areas also seem to be particularly vulnerable during the ageing process. In this review, we discuss major advances in our understanding of age-related changes in the medial temporal lobe and prefrontal cortex and how these changes in functional plasticity contribute to behavioural impairments in the absence of significant pathology.  相似文献   

14.
Ageing is associated with learning and memory impairments. Data are reviewed that suggest that age-related impairments of hippocampal-dependent forms of memory, may be caused, in part, by altered synaptic plasticity mechanisms in the hippocampus, including long-term potentiation (LTP). To the extent that the mechanisms responsible for LTP can be understood, it may be possible to develop therapeutic approaches to alleviate memory decline in normal ageing.  相似文献   

15.
Fear conditioning is a valuable behavioral paradigm for studying the neural basis of emotional learning and memory. The lateral nucleus of the amygdala (LA) is a crucial site of neural changes that occur during fear conditioning. Pharmacological manipulations of the LA, strategically timed with respect to training and testing, have shed light on the molecular events that mediate the acquisition of fear associations and the formation and maintenance of long-term memories of those associations. Similar mechanisms have been found to underlie long-term potentiation (LTP) in LA, an artificial means of inducing synaptic plasticity and a physiological model of learning and memory. Thus, LTP-like changes in synaptic plasticity may underlie fear conditioning. Given that the neural circuit underlying fear conditioning has been implicated in emotional disorders in humans, the molecular mechanisms of fear conditioning are potential targets for psychotherapeutic drug development.  相似文献   

16.
Zhuo M 《Molecules and cells》2007,23(3):259-271
Investigation of molecular and cellular mechanisms of synaptic plasticity is the major focus of many neuroscientists. There are two major reasons for searching new genes and molecules contributing to central plasticity: first, it provides basic neural mechanism for learning and memory, a key function of the brain; second, it provides new targets for treating brain-related disease. Long-term potentiation (LTP), mostly intensely studies in the hippocampus and amygdala, is proposed to be a cellular model for learning and memory. Although it remains difficult to understand the roles of LTP in hippocampus-related memory, a role of LTP in fear, a simplified form of memory, has been established. Here, I will review recent cellular studies of LTP in the anterior cingulate cortex (ACC) and then compare studies in vivo and in vitro LTP by genetic/ pharmacological approaches. I propose that ACC LTP may serve as a cellular model for studying central sensitization that related to chronic pain, as well as pain-related cognitive emotional disorders. Understanding signaling pathways related to ACC LTP may help us to identify novel drug target for various mental disorders.  相似文献   

17.
It is well documented that the hormone leptin plays a pivotal role in regulating food intake and body weight via its hypothalamic actions. However, leptin receptors are expressed throughout the brain with high levels found in the hippocampus. Evidence is accumulating that leptin has widespread actions on CNS function and in particular learning and memory. Recent studies have demonstrated that leptin-deficient or-insensitive rodents have impairments in hippocampal synaptic plasticity and in spatial memory tasks performed in the Morris water maze. Moreover, direct administration of leptin into the brain facilitates hippocampal long-term potentiation (LTP), and improves memory performance in mice. There is also evidence that, at the cellular level, leptin has the capacity to convert hippocampal short-term potentiation (STP) into LTP, via enhancing NMDA receptor function. Recent data indicates that leptin can also induce a novel form of NMDA receptor-dependent hippocampal long-term depression. Here, we review the evidence implicating a key role for the hormone leptin in modulating hippocampal synaptic plasticity and discuss the role of lipid signaling cascades in this process.  相似文献   

18.
The experiments on rats have shown that the elaboration of conditioned drinking reflex in T-maze during administration of 2-ethyl-6-methyl-3-hydroxypyridine antioxidant with an anti-stress effect was accompanied by the development of state dependent learning. However, its formation was slower, as compared to state dependent learning in response to the known psychotropic drugs. The replacing test with the injection of bicuculline, picrotoxin, Ca valproate, Ro-15-1788, benactyzine, Cleregil, etc. during state dependent learning made it possible to establish the role of GABA and cholinergic systems in the formation of state dependent learning and in the development of disorders in emotional behavioural reactions after long-term administration and withdrawal of 3-hydroxypyridine.  相似文献   

19.
Recent reports support higher than expected rates of binge alcohol consumption among women and girls. Unfortunately, few studies have assessed the mechanisms underlying this pattern of intake in females. Studies in males suggest that alcohol concentrations relevant to the beginning stages of binge intoxication may selectively target tonic GABAergic inhibition mediated by GABAA receptor subtypes expressing the δ-subunit protein (δ-GABAARs). Indeed, administration of agonists that interact with these δ-GABAARs prior to alcohol access can abolish binge drinking behavior in male mice. These δ-GABAARs have also been shown to exhibit estrous-dependent plasticity in regions relevant to drug taking behavior, like the hippocampus and periaqueductal gray. The present experiments were designed to determine whether the estrous cycle would alter binge drinking, or our ability to modulate this pattern of alcohol use with THIP, an agonist with high selectivity and efficacy at δ-GABAARs. Using the Drinking-in-the-Dark (DID) binge-drinking model, regularly cycling female mice were given 2 h of daily access to alcohol (20%v/v). Vaginal cytology or vaginal impedance was assessed after drinking sessions to track estrous status. There was no fluctuation in binge drinking associated with the estrous cycle. Both Intra-posterior-VTA administration of THIP and systemic administration of the drug was also associated with an estrous cycle dependent reduction in drinking behavior. Pre-treatment with finasteride to inhibit synthesis of 5α-reduced neurosteroids did not disrupt THIP's effects. Analysis of δ-subunit mRNA from posterior-VTA enriched tissue samples revealed that expression of this GABAA receptor subunit is elevated during diestrus in this region. Taken together, these studies demonstrate that δGABAARs in the VTA are an important target for binge drinking in females and confirm that the estrous cycle is an important moderator of the pharmacology of this GABAA receptor subtype.  相似文献   

20.
Alzheimer's disease (AD) is one of the most common causes of neurodegenerative diseases in the elderly. The accumulation of amyloid‐β (Aβ) peptides is one of the pathological hallmarks of AD and leads to the impairments of synaptic plasticity and cognitive function. The transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel, is involved in synaptic plasticity and memory. However, the role of TRPV1 in AD pathogenesis remains largely elusive. Here, we reported that the expression of TRPV1 was decreased in the brain of APP23/PS45 double transgenic AD model mice. Genetic upregulation of TRPV1 by adeno‐associated virus (AAV) inhibited the APP processing and Aβ deposition in AD model mice. Meanwhile, upregulation of TRPV1 ameliorated the deficits of hippocampal CA1 long‐term potentiation (LTP) and spatial learning and memory through inhibiting GluA2‐containing α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) endocytosis. Furthermore, pharmacological activation of TRPV1 by capsaicin (1 mg/kg, i.p.), an agonist of TRPV1, dramatically reversed the impairments of hippocampal CA1 LTP and spatial learning and memory in AD model mice. Taken together, these results indicate that TRPV1 activation effectively ameliorates cognitive and synaptic functions through inhibiting AMPAR endocytosis in AD model mice and could be a novel molecule for AD treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号