首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Background and aims

Soil pH is among the major environmental factors affecting plant growth. Although the optimum range of soil pH for growth and the tolerance of pH extremes widely vary among plant species, the pH tolerance mechanisms in plants are still poorly understood. In this study, possible mechanisms were examined to explain the differences in tolerance of boreal plants to root zone pH.

Methods

In the controlled-environment solution culture experiments, we compared growth, physiological parameters and tissue nutrient concentrations in aspen, white spruce and tamarack seedlings that were subjected to 8 weeks of root zone pH treatments ranging from 5.0 to 9.0.

Results

The pH treatments had little effect on dry weights and net photosynthesis in white spruce seedlings despite reductions in transpiration rates at higher pH levels. In aspen and tamarack, both the growth and physiological parameters significantly decreased at pH higher than 6.0. The chlorosis of young tissues in aspen and tamarack was associated with the reductions in foliar concentrations of several of the examined essential nutrients including Fe and Mn. Although the plants varied in their ability to deliver essential nutrients to growing leaves, there was no direct correlation between tissue nutrient concentrations, chlorophyll concentrations and plant growth. The results also demonstrated strong inhibition of transpiration rates by high pH.

Conclusions

The results suggest that high root zone pH can upset water balance in pH sensitive species including aspen. Although the uptake and assimilation of essential elements such as Fe and Mn contribute to plant tolerance of high soil pH, we did not observe a direct relationship between growth and foliar nutrient concentrations to account for the observed differences in growth.  相似文献   

2.

Background and aims

Species rich, semi-natural grassland systems provide several ecosystem functions. The goal was to assess how aboveground composition and evenness affects soil substrate utilization pattern and soil microbial functional evenness.

Methods

At five German NATURA 2000 grassland sites, the interactions of plant functional groups (graminoids, forbs and legumes) and belowground microbial functional evenness were investigated in relation to soil properties and sampling date. Functional evenness of soil microorganisms was measured with high spatial resolution by community level physiological profiling (CLPP) using multi-SIR (substrate-induced respiration) at three sampling dates during the vegetation period. Evenness indices were used to compare plant functional group diversity and soil microbial functional diversity.

Results

All sites differed in the consistently high soil microbial functional evenness, which was strongly predicted by soil pH, but not by plant functional groups or aboveground plant dry matter production. However, soil microbial functional evenness was particularly decreased by an increasing legume proportion and showed seasonal changes, probably driven by shifts in resource availability and soil water content.

Conclusions

Our results suggest that changes in soil chemical properties or in a single key plant functional group may have stronger effects on soil microbial functional evenness than changes in plant functional group evenness.  相似文献   

3.

Aims

Aluminum-tolerant wheat plants often produce more root exudates such as malate and phosphate than aluminum-sensitive ones under aluminum (Al) stress, which provides environmental differences for microorganism growth in their rhizosphere soils. This study investigated whether soil bacterial community composition and abundance can be affected by wheat plants with different Al tolerance.

Methods

Two wheat varieties, Atlas 66 (Al-tolerant) and Scout 66 (Al-sensitive), were grown for 60 days in acidic soils amended with or without CaCO3. Plant growth, soil pH, exchangeable Al content, bacterial community composition and abundance were investigated.

Results

Atlas 66 showed better growth and lower rhizosphere soil pH than Scout 66 irrespective of CaCO3 amendment or not, while there was no significant difference in the exchangeable Al content of rhizosphere soil between the two wheat lines. The dominant bacterial community composition and abundance in rhizosphere soils did not differ between Atlas 66 and Scout 66, although the bacterial abundance in rhizosphere soil of both wheat lines was significantly higher than that in bulk soil. Sphingobacteriales, Clostridiales, Burkholderiales and Acidobacteriales were the dominant bacteria phylotypes.

Conclusions

The difference in wheat Al tolerance does not induce the changes in the dominant bacterial community composition or abundance in the rhizosphere soils.  相似文献   

4.

Backgrounds and aims

In Mediterranean frequently burnt areas, the decrease of soil fertility leads to regressive vegetation dynamics. Organic amendments could help to accelerate post-fire ecosystem resilience, by improving soil properties and plant nutrition. This study was conducted to assess the potential of a composted biosolid to restore an early post-fire shrubland.

Methods

About 50 Mg.ha?1 of fresh co-composted sewage sludge and green wastes were surface applied 7 months after fire on a silty-clayey soil. We monitored over a 2-year period organic matter and nutrient transfers to soil, nutrient responses of dominant plant species, and ecosystem contamination by potentially toxic trace elements.

Results

Over the experimental survey, compost rapidly and durably improved soil P2O5, MgO and K2O content, and temporarily increased N-(NO3 ? + NO2 ?) content. Plant nutrition was improved more or less durably depending species. The most positive compost effect was on plant and soil phosphorus content. Plant nutrient storage was not improved 2 years after amendment, suggesting luxury consumption. No contamination by trace elements was detected in soil and plant.

Conclusions

The use of compost after fire could help for rapidly restoring soil fertility and improving plant nutrition. The increase of soil nutrient pools after amendment emphazised the diversity of plant nutritional traits. Eutrophication risk could occur from high compost and soil P2O5 content.  相似文献   

5.
High atmospheric deposition of ammonium affects the physical and chemical status of the soil, increasing nitrogen availability, soil acidity and the mobilization of toxic metal ions. To investigate whether and how the decline of several herbaceous plant species in Dutch heathlands is associated with these processes, the chemical composition of the soil on which these species grow has been compared with the soil on which heathland species such asCalluna vulgaris (L.) Hull,Erica tetralix L. andMolinea caerulea (L.) Moench dominate. The discrimination between both soil types was primarily based on differences in pH (H2O), pH (NaCl) and the aluminium/calcium ratio in the waterextracts. Within the group of endangered herbaceous heathland species these soil parameters also varied. This led to a division into 4 groups of species:

u

  • Dominating species growing on acid soils
  • Herbaceous species growing together with dominating species on acid soils
  • Herbaceous species growing together with dominating species on moderately acid soils
  • Herbaceous species growing together with dominating species on weakly acid soils.
  • This study indicated that, unlike the decline of heather species, the decline of herbaceous species is not likely to be due to increased competition from grass species as a result of eutrophication. Soil acidification and the changed mineral balance in the soil are most likely to be responsible for the decline of all three groups of herbaceous plant species. ei]R F Huettl  相似文献   

    6.

    Background and aims

    Soils can act as agents of natural selection, causing differential fitness among genotypes and/or families of the same plant species, especially when soils have extreme physical or chemical properties. More subtle changes in soils, such as variation in microbial communities, may also act as agents of selection. We hypothesized that variation in soil properties within a single river drainage can be a selective gradient, driving local adaptation in plants.

    Methods

    Using seeds collected from individual genotypes of Populus angustifolia James and soils collected from underneath the same trees, we use a reciprocal transplant design to test whether seedlings would be locally adapted to their parental soil type.

    Results

    We found three patterns: 1. Soils from beneath individual genotypes varied in pH, soil texture, nutrient content, microbial biomass and the physiological status of microorganisms. 2. Seedlings grown in local soils experienced 2.5-fold greater survival than seedlings planted in non-local soils. 3. Using a composite of height, number of leaves and leaf area to measure plant growth, seedlings grew ~17.5% larger in their local soil than in non-local soil.

    Conclusions

    These data support the hypothesis that variation in soils across subtle gradients can act as an important selective agent, causing differential fitness and local adaptation in plants.  相似文献   

    7.

    Aim

    Root biomass has long been under-represented in biodiversity–ecosystem functioning studies, despite its dominance in biomass in many arid and semi-arid ecosystems. We aimed to explore the multivariate control over root biomass by plant diversity, together with other biotic and abiotic factors and to evaluate the relative importance of these factors.

    Methods

    Above- and below-ground traits of 13 communities and soil properties were measured in semi-arid grasslands on the Loess Plateau, China. Structural equation modeling (SEM) was used to evaluate the relative importance of the community and soil characteristics, emphasizing the direct and indirect effects of plant diversity on root biomass.

    Results

    Significant indirect effects of plant species richness on root biomass were found, although no direct correlation was detected between them. In the indirect pathways, plant species richness showed a positive effect on soil total nitrogen, but a significant negative influence on soil total carbon. Soil total nitrogen and plant diversity had the largest and smallest total effect respectively on root biomass in the model.

    Conclusions

    Plant species richness was not the strongest determinant of root biomass but had a significant indirect effect, mediated through soil total carbon and nitrogen. This study suggests that greater plant species richness, through a positive influence on soil total nitrogen, may indirectly promote root carbon stock.  相似文献   

    8.

    Background and aims

    Spatial distribution of soil nutrients (soil heterogeneity) and availability have strong effects on above- and belowground plant functional traits. Although there is ample evidence on the tight links between functional traits and ecosystem functioning, the role played by soil heterogeneity and availability as modulators of such relationship is poorly known.

    Methods

    We conducted a factorial experiment in microcosms containing grasses, legumes and non-legume forbs communities differing in composition to evaluate how soil heterogeneity and availability (50 and 100 mg N) affect the links between traits and ecosystem functioning. Community-aggregated specific leaf area (SLAagg) and specific root length (SRLagg) were measured as both relevant response traits to soil heterogeneity and availability, and significant effect traits affecting ecosystem functioning (i.e., belowground biomass, β-glucosidase and acid phosphatase activities, and in situ N availability rate).

    Results

    SRLagg was negatively and significantly associated to β-glucosidase, phosphatase and N availability rate in the high nutrient availability and heterogeneous distribution scenario. We found a significant negative relationship between SLAagg and availability rate of mineral-N under low nutrient availability conditions.

    Conclusions

    Soil heterogeneity modulated the effects of both traits and nutrient availability on ecosystem functioning. Specific root length was the key trait associated with soil nutrient cycling and belowground biomass in contrasted heterogeneous soil conditions. The inclusion of soil heterogeneity into the trait-based response-effect framework may help to scale from plant communities to the ecosystem level.  相似文献   

    9.
    Ageing of zinc in highly-weathered iron-rich soils   总被引:1,自引:0,他引:1  

    Background and aims

    The reactivity and bioavailability of soluble metal added to soil decreases with time. This process, called ageing, has mainly been investigated in temperate soils. This paper uses isotopic exchangeability to investigate Zn ageing in a range of highly weathered and/or oxide-rich soils.

    Methods

    Changes in lability of soluble added Zn (450?mg Zn/kg soil) over time was measured in six contrasting soils, with pH adjusted to give ten treatments per soil type ranging from pH 4 to 7.

    Results

    Decreasing extractability and isotopic exchangeability (lability) over time revealed substantial fixation of added zinc in six highly weathered/variable charge soils. Strong negative relationships between pH and solubility, and pH and lability were observed. In soils with pH?>?6.5 a significant proportion of the added metal becomes non-isotopically exchangeable within 15?s of addition. Correlations between Mn solubility and Zn lability throughout the incubation demonstrated the role of redox conditions (and pH) in regulating Zn lability.

    Conclusions

    Results showed zinc fixation was strongly related to pH and ageing time, and relatively unaffected by soil type and mineralogy. Very rapid reductions in radiolability immediately (<15?s) after spiking suggest that precipitation plays a role in fixation of added soluble zinc at near neutral pH, however spectroscopic studies are needed to confirm this. Radiolability of added zinc was also affected by changing redox conditions during incubation.  相似文献   

    10.

    Background and aims

    Soils derived from serpentinite (serpentine soils) often have low macronutrient concentrations, exceedingly low Ca:Mg molar ratios and high heavy metal concentrations, typically resulting in sparse vegetative cover. This combined suite of edaphic stresses is referred to as the “serpentine syndrome.” Although several plant community-level studies have been conducted to identify the most important edaphic factor limiting plant growth on serpentine, the primary factor identified has often varied by plant community and local climate. Few studies to date have been conducted in serpentine plant communities of alpine or boreal climates. The goal of our study was to determine the primary limiting edaphic factors on plant community species composition and productivity (cover) in the alpine and boreal climate of the Western Alps, Italy.

    Methods

    Soil properties and vegetation composition were analyzed for several sites underlain by serpentinite, gabbro, and calc-schist substrates and correlated using direct and indirect statistical methods.

    Results

    Boreal forest soils were well-developed and tended to have low pH throughout the soil profile resulting in high Ni availability. Alpine soils, in comparison, were less developed. The distinct serpentine plant communities of the Western Alps are most strongly correlated with high levels of bioavailable Ni associated with low soil pH. Other factors such as macronutrient deficiency, low Ca:Mg molar ratio and drought appear to be less important.

    Conclusions

    The strong ecological influence of Ni is caused by environmental conditions which increase metal mobilization.  相似文献   

    11.

    Aims

    Two pot experiments in a “walk-in” growth chamber with controlled day and night temperatures were conducted to investigate the influence of elevated temperatures along with rice straw incorporation on methane (CH4) and nitrous oxide (N2O) emissions as well as rice yield.

    Methods

    Three temperature regimes–29/25, 32/25, and 35/30 °C (Exp. I) and 29/22, 32/25, and 35/28 °C (Exp. II), representing daily maxima/minima were used in the study. Two amounts of rice straw (0 and 6 t ha?1) were applied with four replications in each temperature regime. CH4 and N2O emissions as well as soil redox potential (Eh) were monitored weekly throughout the rice-growing period.

    Results

    Elevated temperatures increased CH4 emission rates, with a more pronounced effect from flowering to maturity. The increase in emissions was further enhanced by incorporation of rice straw. A decrease in soil Eh to <?100 mV and CH4 emissions was observed early in rice straw–incorporated pots while the soil without straw did not reach negative Eh levels (Exp. I) or showed a delayed decrease (Exp. II). Moreover, soil with high organic C (Exp. II) had higher CH4 emissions. In contrast to CH4 emissions, N2O emissions were negligible during the rice-growing season. The global warming potential (GWP) was highest at high temperature with rice straw incorporation compared with low temperature without rice straw. On the other hand, the high temperature significantly increased spikelet sterility and reduced grain yield (p?<?0.05).

    Conclusions

    Elevated temperature increased GWP while decreased rice yield. This suggests that global warming may result in a double negative effect: higher emissions and lower yields.  相似文献   

    12.

    Aim

    Rhizobacteria can influence plant growth and metal accumulation. The aim of this study was to evaluate the effect of rhizobacterial inoculants on the Ni phytoextraction efficiency of the Ni-hyperaccumulator Alyssum pintodasilvae.

    Method

    In a preliminary screening 15 metal-tolerant bacterial strains were tested for their plant growth promoting (PGP) capacity or effect on Ni bioaccumulation. Strains were selected for their Ni tolerance, plant growth promoting traits and Ni solubilizing capacity. In a re-inoculation experiment five of the previously screened bacterial isolates were used to inoculate A. pintodasilvae in two contrasting Ni-rich soils (a serpentine (SP) soil and a sewage sludge-affected agricultural (LF) soil).

    Results

    Plant growth was greater in serpentine soil (where it grows naturally) than in the LF soil, probably due to Cd phytotoxicity. Rhizobacterial inoculants influenced plant growth and Ni uptake and accumulation, but the effect of the strains was dependent upon soil type. The increase in plant biomass and/or Ni accumulation significantly promoted shoot Ni removal.

    Conclusion

    One strain (Arthrobacter nicotinovorans SA40) was able to promote plant growth and phytoextraction of Ni in both soil types and could be a useful candidate for future field-based trials.  相似文献   

    13.

    Aims

    Phytoextration of metal polluted soils using hyperaccumulators is a promising technology but requires long term successive cropping. This study investigated the dynamics of plant metal uptake and changes in soil metals over a long remediation time.

    Methods

    A soil slightly polluted with metals (S1) was mixed with highly polluted soil (S4) to give two intermediate pollution levels (S2, S3). The four resulting soils were repeatedly phyto-extracted using nine successive crops of Cd/Zn-hyperaccumulator Sedum plumbizincicola over a period of 4 years.

    Results

    Shoot Cd concentration decreased with harvest time in all soils but shoot Zn declined in S1 only. Similar shoot Zn concentrations were found in S2, S3 and S4 although these soils differed markedly in metal availability, and their available metals decreased during phytoextraction. A possible explanation is that plant active acquisition ability served to maintain plant metal uptake. Plant uptake resulted in the largest decrease in the acid-soluble metal fraction followed by reducible metals. Oxidisable and residual fractions were less available to plants. The coarse soil particle fractions made the major contribution to metal decline overall than the fine fractions.

    Conclusion

    Sedum plumbizincicola maintained long term metal uptake and the coarse soil particles played the most important role in phytoextraction.  相似文献   

    14.

    Background

    Soil phosphorus availability declines during long-term ecosystem development on stable land surfaces due to a gradual loss of phosphorus in runoff and transformation of primary mineral phosphate into secondary minerals and organic compounds. These changes have been linked to a reduction in plant biomass as ecosystems age, but the implications for belowground organisms remain unknown.

    Methods

    We constructed a phosphorus budget for the well-studied 120,000 year temperate rainforest chronosequence at Franz Josef, New Zealand. The budget included the amounts of phosphorus in plant biomass, soil microbial biomass, and other soil pools.

    Results

    Soil microbes contained 68–78 % of the total biomass phosphorus (i.e. plant plus microbial) for the majority of the 120,000 year chronosequence. In contrast, plant phosphorus was a relatively small pool that occurred predominantly in wood. This points to the central role of the microbial biomass in determining phosphorus availability as ecosystems mature, yet also indicates the likelihood of strong competition between plants and saprotrophic microbes for soil phosphorus.

    Conclusions

    This novel perspective on terrestrial biogeochemistry challenges our understanding of phosphorus cycling by identifying soil microbes as the major biological phosphorus pool during long-term ecosystem development.  相似文献   

    15.
    16.

    Aims

    The rhizosphere is a dynamic system strongly influenced by root activity. Roots modify the pH of their surrounding soil causing the soil pH to vary as a function of distance from root surface, location along root axes, and root maturity. Non-invasive imaging techniques provide the possibility to capture pH patterns around the roots as they develop.

    Methods

    We developed a novel fluorescence imaging set up and applied to the root system of two lupin (Lupinus albus L., Lupinus angustifolius L.) and one soft-rush (Juncus effusus L.) species. We grew plants in glass containers filled with soil and equipped with fluorescence sensor foils on the container side walls. We gained highly-resolved data on the spatial distribution of H+ around the roots by taking time-lapse images of the samples over the course of several days.

    Results

    We showed how the soil pH in the vicinity of roots developed over time to different values from that of the original bulk soil. The soil pH in the immediate vicinity of the root surface varied greatly along the root length, with the most acidic point being at 0.56–3.36 mm behind the root tip. Indications were also found for temporal soil pH changes due to root maturity.

    Conclusion

    In conclusion, this study shows that this novel optical fluorescence imaging set up is a powerful tool for studying pH developments around roots in situ.  相似文献   

    17.

    Aims

    This study investigates how burrow-nesting, colonial seabirds structure the spatial patterns of soil and plant properties (including soil and leaf N) and tests whether burrow density drives these spatial patterns within each of six individual islands that vary greatly in burrow density.

    Methods

    Within individual islands, we compared semivariograms (SVs) with and without burrows as a spatial trend. We also used SVs to describe and compare the spatial patterns among islands for each of 16 soil and plant variables.

    Results

    Burrow density within a single island was only important in determining spatial structuring in one-fifth of the island-variable combinations tested. Among islands, some variables (i.e., soil pH, δ15N, and compaction; microbial biomass and activity) achieved peak spatial variance on intermediate-density islands, while others (i.e., net ammonification, net nitrification, NH4 +, NO3 -) became increasingly variable on densely burrowed islands.

    Conclusions

    Burrow density at the within-island scale was far less important than expected. Seabirds and other ecosystem engineers whose activities (e.g., nutrient subsidies, soil disturbance) influence multiple spatial scales can increase spatial heterogeneity even at high densities, inconsistent with a “hump-shaped” relationship between resource availability and heterogeneity.  相似文献   

    18.

    Background and aims

    Soil aggregation is a crucial aspect of ecosystem functioning in terrestrial ecosystems. Arbuscular mycorrhizal fungi (AMF) play a key role in soil aggregate formation and stabilization. Here we quantitatively analyzed the importance of experimental settings as well as biotic and abiotic factors for the effectiveness of AMF to stabilize soil macroaggregates.

    Methods

    We gathered 35 studies on AMF and soil aggregation and tested 13 predictor variables for their relevance with a boosted regression tree analysis and performed a meta-analysis, fitting individual random effects models for each variable.

    Results and conclusions

    The overall mean effect of inoculation with AMF on soil aggregation was positive and predictor variable means were all in the range of beneficial effects. Pot studies and studies with sterilized sandy soil, near neutral soil pH, a pot size smaller than 2.5 kg and a duration between 2.2 and 5 months were more likely to result in stronger effects of AMF on soil aggregation than experiments in the field, with non-sterilized or fine textured soil or an acidic pH. This is the first study to quantitatively show that the effect of AMF inoculation on soil aggregation is positive and context dependent. Our findings can help to improve the use of this important ecosystem process, e.g. for inoculum application in restoration sites.  相似文献   

    19.

    Background and aims

    Arbuscular mycorrhizas (AM) play different roles in plant Zn nutrition depending on whether the soil is Zn-deficient (AM enhancement of plant Zn uptake) or Zn-toxic (AM protection of plant from excessive Zn uptake). In addition, soil P concentration modifies the response of AM to soil Zn conditions. We undertook a glasshouse experiment to study the interactive effects of P and Zn on AM colonisation, plant growth and nutrition, focusing on the two extremes of soil Zn concentration—deficient and toxic.

    Methods

    We used a mycorrhiza-defective tomato (Solanum lycopersicum) genotype (rmc) and compared it to its wild-type counterpart (76R). Plants were grown in pots amended with five soil P addition treatments, and two soil Zn addition treatments.

    Results

    The mycorrhizal genotype generally thrived better than the non-mycorrhizal genotype, in terms of biomass and tissue P and Zn concentrations. This was especially true under low soil Zn and P conditions, however there was evidence of the ‘protective effect’ of mycorrhizas when soil was Zn-contaminated. Above- and below-ground allocation of biomass, P and Zn were significantly affected by AM colonisation, and toxic soil Zn conditions.

    Conclusions

    The relationship between soil Zn and soil P was highly interactive, and heavily influenced AM colonisation, plant growth, and plant nutrition.  相似文献   

    20.

    Aims

    A commonly accepted challenge when visualising plant roots in X-ray micro Computed Tomography (μCT) images is the similar X-ray attenuation of plant roots and soil phases. Soil moisture content remains a recognised, yet currently uncharacterised source of segmentation error. This work sought to quantify the effect of soil moisture content on the ability to segment roots from soil in μCT images.

    Methods

    Rice (Oryza sativa) plants grown in contrasting soils (loamy sand and clay loam) were μCT scanned daily for nine days whilst drying from saturation. Root volumes were segmented from μCT images and compared with volumes derived by root washing.

    Results

    At saturation the overlapping attenuation values of root material, water-filled soil pores and soil organic matter significantly hindered segmentation. However, in dry soil (ca. six days of drying post-saturation) the air-filled pores increased image noise adjacent to roots and impeded accurate visualisation of root material. The root volume was most accurately segmented at field capacity.

    Conclusions

    Root volumes can be accurately segmented from μCT images of undisturbed soil without compromising the growth requirements of the plant providing soil moisture content is kept at field capacity. We propose all future studies in this area should consider the error associated with scanning at different soil moisture contents.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号