首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Techniques for characterizing very small single-channel currents buried in background noise are described and tested on simulated data to give confidence when applied to real data. Single channel currents are represented as a discrete-time, finite-state, homogeneous, Markov process, and the noise that obscures the signal is assumed to be white and Gaussian. The various signal model parameters, such as the Markov state levels and transition probabilities, are unknown. In addition to white Gaussian noise, the signal can be corrupted by deterministic interferences of known form but unknown parameters, such as the sinusoidal disturbance stemming from AC interference and a drift of the base line owing to a slow development of liquid-junction potentials. To characterize the signal buried in such stochastic and deterministic interferences, the problem is first formulated in the framework of a Hidden Markov Model and then the Expectation Maximization algorithm is applied to obtain the maximum likelihood estimates of the model parameters (state levels, transition probabilities), signals, and the parameters of the deterministic disturbances. Using fictitious channel currents embedded in the idealized noise, we first show that the signal processing technique is capable of characterizing the signal characteristics quite accurately even when the amplitude of currents is as small as 5-10 fA. The statistics of the signal estimated from the processing technique include the amplitude, mean open and closed duration, open-time and closed-time histograms, probability of dwell-time and the transition probability matrix. With a periodic interference composed, for example, of 50 Hz and 100 Hz components, or a linear drift of the baseline added to the segment containing channel currents and white noise, the parameters of the deterministic interference, such as the amplitude and phase of the sinusoidal wave, or the rate of linear drift, as well as all the relevant statistics of the signal, are accurately estimated with the algorithm we propose. Also, if the frequencies of the periodic interference are unknown, they can be accurately estimated. Finally, we provide a technique by which channel currents originating from the sum of two or more independent single channels are decomposed so that each process can be separately characterized. This process is also formulated as a Hidden Markov Model problem and solved by applying the Expectation Maximization algorithm. The scheme relies on the fact that the transition matrix of the summed Markov process can be construed as a tensor product of the transition matrices of individual processes.  相似文献   

2.
The maximum-likelihood technique for the direct estimation of rate constants from the measured patch clamp current is extended to the analysis of multi-channel recordings, including channels with subconductance levels. The algorithm utilizes a simplified approach for the calculation of the matrix exponentials of the probability matrix from the rate constants of the Markov model of the involved channel(s) by making use of the Kronecker sum and product. The extension to multi-channel analysis is tested by the application to simulated data. For these tests, three different channel models were selected: a two-state model, a three-state model with two open states of different conductance, and a three-state model with two closed states. For the simulations, time series of these models were calculated from the related first-order, finite-state, continuous-time Markov processes. Blue background noise was added, and the signals were filtered by a digital filter similar to the anti-aliasing low-pass. The tests showed that the fit algorithm revealed good estimates of the original rate constants from time series of simulated records with up to four independent and identical channels even in the case of signal-to-noise ratios being as low as 2. The number of channels in a record can be determined from the dependence of the likelihood on channel number. For large enough data sets, it takes on a maximum when the assumed channel number is equal to the "true" channel number.  相似文献   

3.
Hidden Markov modelling is a powerful and efficient digital signal processing strategy for extracting the maximum likelihood model from a finite length sample of noisy data. Assuming the number of states in the model is known, then the state levels, transition probabilities, initial state distribution and the noise variance can be estimated. We investigate the applicability of this technique in membrane channel kinetics not only as a parameter estimator, but also as an aid to discriminating between various model types according to their statistical likelihood. We survey three representative classes of channel dynamics, namely: aggregated Markov models, semi-Markov models (with asymptotically convergent transition probabilities), and coupled Markov models; reformulating each within a discrete-time hidden Markov model framework. We then provide numerical evidence of the effectiveness of the procedure using simulated channel data and hence show that the correct model, as well as the model parameters, can be discerned. We also demonstrate that the model likelihood can be used to indicate the approximate number of states in the model.  相似文献   

4.
Hidden Markov models have recently been used to model single ion channel currents as recorded with the patch clamp technique from cell membranes. The estimation of hidden Markov models parameters using the forward-backward and Baum-Welch algorithms can be performed at signal to noise ratios that are too low for conventional single channel kinetic analysis; however, the application of these algorithms relies on the assumptions that the background noise be white and that the underlying state transitions occur at discrete times. To address these issues, we present an "H-noise" algorithm that accounts for correlated background noise and the randomness of sampling relative to transitions. We also discuss three issues that arise in the practical application of the algorithm in analyzing single channel data. First, we describe a digital inverse filter that removes the effects of the analog antialiasing filter and yields a sharp frequency roll-off. This enhances the performance while reducing the computational intensity of the algorithm. Second, the data may be contaminated with baseline drifts or deterministic interferences such as 60-Hz pickup. We propose an extension of previous results to consider baseline drift. Finally, we describe the extension of the algorithm to multiple data sets.  相似文献   

5.
Qin F 《Biophysical journal》2004,86(3):1488-1501
Patch-clamp recording provides an unprecedented means for study of detailed kinetics of ion channels at the single molecule level. Analysis of the recordings often begins with idealization of noisy recordings into continuous dwell-time sequences. Success of an analysis is contingent on accuracy of the idealization. I present here a statistical procedure based on hidden Markov modeling and k-means segmentation. The approach assumes a Markov scheme involving discrete conformational transitions for the kinetics of the channel and a white background noise for contamination of the observations. The idealization is sought to maximize a posteriori probability of the state sequence corresponding to the samples. The approach constitutes two fundamental steps. First, given a model, the Viterbi algorithm is applied to determine the most likely state sequence. With the resultant idealization, the model parameters are then empirically refined. The transition probabilities are calculated from the state sequences, and the current amplitudes and noise variances are determined from the ensemble means and variances of those samples belonging to the same conductance classes. The two steps are iterated until the likelihood is maximized. In practice, the algorithm converges rapidly, taking only a few iterations. Because the noise is taken into explicit account, it allows for a low signal/noise ratio, and consequently a relatively high bandwidth. The approach is applicable to data containing subconductance levels or multiple channels and permits state-dependent noises. Examples are given to elucidate its performance and practical applicability.  相似文献   

6.
Hidden Markov models have been used to restore recorded signals of single ion channels buried in background noise. Parameter estimation and signal restoration are usually carried out through likelihood maximization by using variants of the Baum-Welch forward-backward procedures. This paper presents an alternative approach for dealing with this inferential task. The inferences are made by using a combination of the framework provided by Bayesian statistics and numerical methods based on Markov chain Monte Carlo stochastic simulation. The reliability of this approach is tested by using synthetic signals of known characteristics. The expectations of the model parameters estimated here are close to those calculated using the Baum-Welch algorithm, but the present methods also yield estimates of their errors. Comparisons of the results of the Bayesian Markov Chain Monte Carlo approach with those obtained by filtering and thresholding demonstrate clearly the superiority of the new methods.  相似文献   

7.
Macroscopic ion channel current can be derived by summation of the stochastic records of individual channel currents. In this paper, we present two probability density functions of single channel records that can uniquely determine the macroscopic current regardless of other statistical properties of records or the stochastic model of channel gating (presented often with stationary Markov models). We show that H(t), probability density function of channel opening events (introduced explicitly in this paper), and D(t), probability density function of the open duration (sometimes has named dwell time distribution as well), determine the normalized macroscopic current, G(t), through G(t) = P(t) - H(t) * Q(t) where P(t) is the cumulative density function of H(t), Q(t) is the cumulative density function of D(t), * is the symbol of convolution integral and G(t) is the macroscopic current divided by the amplitude of single channel current and the number of single channel sweeps. Compared to other equations for the macroscopic current, here the macroscopic current is expressed only in terms of the statistical properties of single channel current and not the stochastic model of ion channel gating or a conditioned form of macroscopic current. Single channel currents of an inactivating BK channel were used to validate this relationship experimentally too. In this paper, we used median filters as they can remove the unwanted noise without smoothing the transitions between open and closed states (compare to low pass filters). This filtering leads to more accurate measurement of transition times and less amount of missed events.  相似文献   

8.
Though stochastic models are widely used to describe single ion channel behaviour, statistical inference based on them has received little consideration. This paper describes techniques of statistical inference, in particular likelihood methods, suitable for Markov models incorporating limited time resolution by means of a discrete detection limit. To simplify the analysis, attention is restricted to two-state models, although the methods have more general applicability. Non-uniqueness of the mean open-time and mean closed-time estimators obtained by moment methods based on single exponential approximations to the apparent open-time and apparent closed-time distributions has been reported. The present study clarifies and extends this previous work by proving that, for such approximations, the likelihood equations as well as the moment equations (usually) have multiple solutions. Such non-uniqueness corresponds to non-identifiability of the statistical model for the apparent quantities. By contrast, higher-order approximations yield theoretically identifiable models. Likelihood-based estimation procedures are developed for both single exponential and bi-exponential approximations. The methods and results are illustrated by numerical examples based on literature and simulated data, with consideration given to empirical distributions and model control, likelihood plots, and point estimation and confidence regions.  相似文献   

9.
Insertions and deletions in a profile hidden Markov model (HMM) are modeled by transition probabilities between insert, delete and match states. These are estimated by combining observed data and prior probabilities. The transition prior probabilities can be defined either ad hoc or by maximum likelihood (ML) estimation. We show that the choice of transition prior greatly affects the HMM's ability to discriminate between true and false hits. HMM discrimination was measured using the HMMER 2.2 package applied to 373 families from Pfam. We measured the discrimination between true members and noise sequences employing various ML transition priors and also systematically scanned the parameter space of ad hoc transition priors. Our results indicate that ML priors produce far from optimal discrimination, and we present an empirically derived prior that considerably decreases the number of misclassifications compared to ML. Most of the difference stems from the probabilities for exiting a delete state. The ML prior, which is unaware of noise sequences, estimates a delete-to-delete probability that is relatively high and does not penalize noise sequences enough for optimal discrimination.  相似文献   

10.
11.
A generalized subspace approach is proposed for single channel brain evoked potential (EP) extraction from background electroencephalogram (EEG) signal. The method realizes the optimum estimate of EP signal from the observable noisy signal. The underlying principle is to project the signal and noise into signal and noise coefficient subspace respectively by applying projection matrix at first. Secondly, coefficient weighting matrix is achieved based on the autocorrelation matrices of the noise and the noisy signal. With the coefficient weighting matrix, we can remove the noise projection coefficients and estimate the signal ones. EP signal is then obtained by averaging the signals estimated with the reconstruction matrix. Given different signal-to-noise ratio (SNR) conditions, the algorithm can estimate the EP signal with only two sweeps observable noisy signals. Our approach is shown to have excellent capability of estimating EP signal even in poor SNR conditions. The interference of spontaneous EEG has been eliminated with significantly improved SNR. The simulation results have demonstrated the effectiveness and superior performance of the proposed method.  相似文献   

12.
Macroscopic ion channel current is the summation of the stochastic records of individual channel currents and therefore relates to their statistical properties. As a consequence of this relationship, it may be possible to derive certain statistical properties of single channel records or even generate some estimates of the records themselves from the macroscopic current when the direct measurement of single channel currents is not applicable. We present a procedure for generating the single channel records of an ion channel from its macroscopic current when the stochastic process of channel gating has the following two properties: (I) the open duration is independent of the time of opening event and has a single exponential probability density function (pdf), (II) all the channels have the same probability to open at time t. The application of this procedure is considered for cases where direct measurement of single channel records is difficult or impossible. First, the probability density function (pdf) of opening events, a statistical property of single channel records, is derived from the normalized macroscopic current and mean channel open duration. Second, it is shown that under the conditions (I) and (II), a non-stationary Markov model can represent the stochastic process of channel gating. Third, the non-stationary Markov model is calibrated using the results of the first step. The non-stationary formulation increases the model ability to generate a variety of different single channel records compared to common stationary Markov models. The model is then used to generate single channel records and to obtain other statistical properties of the records. Experimental single channel records of inactivating BK potassium channels are used to evaluate how accurately this procedure reconstructs measured single channel sweeps.  相似文献   

13.
Songs of many songbird species consist of variable sequences of a finite number of syllables. A common approach for characterizing the syntax of these complex syllable sequences is to use transition probabilities between the syllables. This is equivalent to the Markov model, in which each syllable is associated with one state, and the transition probabilities between the states do not depend on the state transition history. Here we analyze the song syntax in Bengalese finch. We show that the Markov model fails to capture the statistical properties of the syllable sequences. Instead, a state transition model that accurately describes the statistics of the syllable sequences includes adaptation of the self-transition probabilities when states are revisited consecutively, and allows associations of more than one state to a given syllable. Such a model does not increase the model complexity significantly. Mathematically, the model is a partially observable Markov model with adaptation (POMMA). The success of the POMMA supports the branching chain network model of how syntax is controlled within the premotor song nucleus HVC, but also suggests that adaptation and many-to-one mapping from the syllable-encoding chain networks in HVC to syllables should be included in the network model.  相似文献   

14.
15.
L-cysteine (L-cys) increases the amplitude of T-type Ca2+ currents in rat T-rich nociceptor-like dorsal root ganglia neurons. The modulation of T-type Ca2+ channel gating by L-cys was studied by fitting Markov state models to whole-cell currents recorded from T-rich neurons. The best fitting model tested included three resting states and inactivation from the second resting state and the open state. Inactivation and the final opening step were voltage-independent, whereas transitions between the resting states and deactivation were voltage-dependent. The transition rates between the first two resting states were an order of magnitude faster than those between the second and third resting states, and the voltage-dependency of forward transitions through resting states was two to three times greater than for analogous backward transitions. Analysis with the best fitting model suggested that L-cys increases current amplitude mainly by increasing the transition rate from resting to open and decreasing the transition rate from open to inactivated. An additional model was developed that could account for the bi-exponential time course of recovery from inactivation of the currents and the high frequency of blank sweeps in single channel recordings. This model detected basically the same effects of L-cys on channel gating as the best fitting model.  相似文献   

16.
We propose an analytical approximation method for the estimation of multipoint identity by descent (IBD) probabilities in pedigrees containing a moderate number of distantly related individuals. We show that in large pedigrees where cases are related through untyped ancestors only, it is possible to formulate the hidden Markov model of the Lander-Green algorithm in terms of the IBD configurations of the cases. We use a first-order Markov approximation to model the changes in this IBD-configuration variable along the chromosome. In simulated and real data sets, we demonstrate that estimates of parametric and nonparametric linkage statistics based on the first-order Markov approximation are accurate. The computation time is exponential in the number of cases instead of in the number of meioses separating the cases. We have implemented our approach in the computer program ALADIN (accurate linkage analysis of distantly related individuals). ALADIN can be applied to general pedigrees and marker types and has the ability to model marker-marker linkage disequilibrium with a clustered-markers approach. Using ALADIN is straightforward: It requires no parameters to be specified and accepts standard input files.  相似文献   

17.
Hidden Markov modeling (HMM) can be applied to extract single channel kinetics at signal-to-noise ratios that are too low for conventional analysis. There are two general HMM approaches: traditional Baum's reestimation and direct optimization. The optimization approach has the advantage that it optimizes the rate constants directly. This allows setting constraints on the rate constants, fitting multiple data sets across different experimental conditions, and handling nonstationary channels where the starting probability of the channel depends on the unknown kinetics. We present here an extension of this approach that addresses the additional issues of low-pass filtering and correlated noise. The filtering is modeled using a finite impulse response (FIR) filter applied to the underlying signal, and the noise correlation is accounted for using an autoregressive (AR) process. In addition to correlated background noise, the algorithm allows for excess open channel noise that can be white or correlated. To maximize the efficiency of the algorithm, we derive the analytical derivatives of the likelihood function with respect to all unknown model parameters. The search of the likelihood space is performed using a variable metric method. Extension of the algorithm to data containing multiple channels is described. Examples are presented that demonstrate the applicability and effectiveness of the algorithm. Practical issues such as the selection of appropriate noise AR orders are also discussed through examples.  相似文献   

18.
A significant problem in biological motif analysis arises when the background symbol distribution is biased (e.g. high/low GC content in the case of DNA sequences). This can lead to overestimation of the amount of information encoded in a motif. A motif can be depicted as a signal using information theory (IT). We apply two concepts from IT, distortion and patterned interference (a type of noise), to model genomic and codon bias respectively. This modeling approach allows us to correct a raw signal to recover signals that are weakened by compositional bias. The corrected signal is more likely to be discriminated from a biased background by a macromolecule. We apply this correction technique to recover ribosome-binding site (RBS) signals from available sequenced and annotated prokaryotic genomes having diverse compositional biases. We observed that linear correction was sufficient for recovering signals even at the extremes of these biases. Further comparative genomics studies were made possible upon correction of these signals. We find that the average Euclidian distance between RBS signal frequency matrices of different genomes can be significantly reduced by using the correction technique. Within this reduced average distance, we can find examples of class-specific RBS signals. Our results have implications for motif-based prediction, particularly with regards to the estimation of reliable inter-genomic model parameters.  相似文献   

19.
We tested the ability of birds to detect and discriminate natural vocal signals in the presence of masking noise using operant conditioning. Masked thresholds were measured for budgerigars, Melopsittacus undulatus, and zebra finches, Taeniopygia guttata, on natural contact calls of budgerigars, zebra finches and canaries, Serinus canaria. Thresholds increased with increasing call bandwidth, the presence of amplitude modulation and high rates of frequency modulation in calls. As expected, detection thresholds increased monotonically with background noise level. Call detection thresholds varied with the spectral shape of noise. Vocal signals were masked predominantly by noise energy in the spectral region of the signals and not by energy at spectral regions remote from the signals. In all cases, thresholds for discrimination between calls of the same species were higher than thresholds for detection of those calls. Our data provide the first opportunity to estimate distances over which specific communication signals may be effective (i.e. their ‘active space’) using masked thresholds for the signals themselves. Our results suggest that measures of peak sound pressure level, combined with the spectrum level of noise within the frequency channel having the greatest signal power relative to background noise, give the most similar results for estimating a signal's maximum communication distance across a variety of sounds. We provide a simple model for estimating likely detection and discrimination distances for the signals tested here. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.  相似文献   

20.
Internal motions in proteins and gating kinetics of ionic channels.   总被引:9,自引:8,他引:1       下载免费PDF全文
Single-channel current recordings have revealed a complex kinetic behavior of ionic channels. Many channels exhibit closed-time distributions in which long waiting times occur with a much higher frequency than predicted by a simple exponential decay function. In this paper a model for opening-closing transitions that accounts for internal motions in the protein matrix is discussed. The model is based on the notion that the transition between a conductive and a nonconductive state of the channel represents a local process in the protein, such as the movement of a small segment of a peptide chain or the rotation of a single amino-acid residue. When the blocking group moves into the ion pathway, a structural defect is created consisting in a region of loose packing and/or poor hydrogen bonding. By rearrangements of neighboring groups, the defect may migrate within the protein matrix, carrying out a kind of random walk. Once the defect has moved away from the site where it was formed, a transition back to the open state of the channel is possible only when the defect has returned by chance to the original position. The kinetic properties of this model are analyzed by stochastic simulation of defect diffusion in a small domain of the protein. With a suitable choice of domain size and diffusion rate, the model is found to predict closed-time distributions that agree with experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号