首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The N-terminal pro-peptide of 77 amino acid residues is essential for the folding of subtilisin, an alkaline serine protease from Bacillus subtilis. The synthetic pro-peptide has been shown to be capable of guiding the proper folding of denatured subtilisin to enzymatically active enzyme. Thus the pro-peptide serves as an intramolecular chaperone, which is removed by an autoprocessing reaction after the completion of the folding. With use of localized polymerase chain reaction random mutagenesis a total of 25 amino acid substitution mutations that affected subtilisin activities were isolated. These mutations occurred in a high frequency at the hydrophobic regions of the pro-peptide. For one of the mutations, M(-60)T, a second-site suppressor mutation, S(188)L, was isolated within the mature region. These results suggest that the pro-peptide consists of a few functional regions which interact with specific regions of the mature region of subtilisin during the folding process.  相似文献   

2.
Intramolecular chaperone: the role of the pro-peptide in protein folding.   总被引:3,自引:0,他引:3  
M Inouye 《Enzyme》1991,45(5-6):314-321
Subtilisin, an alkaline serine protease, is produced in the bacterium as pre-pro-subtilisin; the pre-peptide of 29 amino acid residues is the signal peptide essential for the secretion of prosubtilisin from the cytoplasm into the culture medium. On the other hand, the pro-peptide of 77 residues covalently linked to the amino terminal end of the subtilisin intramolecularly guides the folding of subtilisin into the active enzyme. Importantly, the pro-peptide is not required for the enzymatic activity and is removed intramolecularly by autoprocessing upon the completion of the protein folding. In this review, I will first summarize all the data concerning the functions of the subtilisin pro-peptide. On the basis of these results, I shall discuss a new general concept, an intramolecular chaperone to explain the essential role of the pro-peptide in protein folding.  相似文献   

3.
Subtilisin E, an alkaline serine protease of Bacillus subtilis 168, is first produced as a precursor, pre-pro-subtilisin, which consists of a signal peptide for protein secretion (pre-sequence) and a peptide extension of 77 amino acid residues (pro-sequence) between the signal peptide and mature subtilisin. When the entire coding region for pre-pro-subtilisin E was cloned into an Escherichia coli expression vector, active mature subtilisin E was secreted into the periplasmic space. When the pre-sequence was replaced with the E. coli OmpA signal peptide, active subtilisin E was also produced. When the OmpA signal peptide was directly fused to the mature subtilisin sequence, no protease activity was detected, although this product had the identical primary structure as subtilisin E as a result of cleavage of the OmpA signal peptide and was produced at a level of approximately 10% of total cellular protein. When the OmpA signal peptide was fused to the 15th or 44th amino acid residue from the amino terminus of the pro-sequence, active subtilisin was also not produced. These results indicate that the pro-sequence of pre-pro-subtilisin plays an important role in the formation of enzymatically active subtilisin. It is proposed that the pro-sequence is essential for guiding appropriate folding of the enzymatically active conformation of subtilisin E.  相似文献   

4.
Cloning and expression of subtilisin amylosacchariticus gene   总被引:7,自引:0,他引:7  
The gene encoding subtilisin Amylosacchariticus from Bacillus subtilis var. amylosacchariticus was isolated and the entire nucleotide sequence of the coding sequence was determined. The deduced amino acid sequence revealed an N-terminal signal peptide and pro-peptide of 106 residues followed by the mature protein comprising 275 residues. There were discrepancies in 10 amino acids between the sequence elucidated from the nucleotide sequence and the published protein sequence (Kurihara et al. (1972) J. Biol. Chem. 247, 5619-5631). The nucleotide sequence was highly homologous to that of subtilisin E gene from B. subtilis 168, with discrepancies at 12 nucleotides out of 1,426 nucleotides we sequenced. Ten of them were found in mature subtilisin coding sequence, which resulted in two amino acid changes and another one was in the putative promoter region between two genes. The productivity of subtilisin in culture broth of B. subtilis var. amylosacchariticus was much higher than that of B. subtilis 168. The enzyme gene was inserted in a shuttle vector pHY300PLK, with which B. subtilis ISW1214 was transformed. The proteolytic activity found in the culture broth of the transformed bacterium was 20- and 4-fold higher than those of the host strain and B. subtilis var. amylosacchariticus, respectively. Subtilisin Amylosacchariticus was easily purified to a crystalline form from culture filtrate of cloned B. subtilis, after a single step of chromatography on CM-cellulose.  相似文献   

5.
6.
AIMS: The objective of this study is to actively express a novel fibrinolytic enzyme, subtilisin DFE (douchi fibrinolytic enzyme), in Escherichia coli. METHODS AND RESULTS: The DNA fragments encoding pro-subtilisin DFE was amplified and cloned into the vector pET32a to obtain N-terminal Trx fusion expression plasmid. The recombinant subtilisin DFE was successfully expressed and processed in the soluble fraction of E. coli BL21(DE3) in a similar fashion as the endogenous one of Bacillus amyloliquefaciens DC-4, resulting in an active enzyme. Moreover, active enzyme can also be refolded from inclusion body. CONCLUSIONS: Active subtilisin DFE can be expressed and processed in E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides evidences that subtilisin DFE can be actively expressed in E. coli and the pro-peptide is essential for guiding the proper folding into the active conformation. As such, large quantities of recombinant subtilisin DFE can be produced for pharmacological and clinical research.  相似文献   

7.
A novel fibrinolytic enzyme, subtilisin BSF1, from a newly isolated Bacillus subtilis A26 was purified, characterized and the gene was isolated and sequenced. The subtilisin BSF1 was purified to homogeneity by five-step procedure with a 4.97-fold increase in specific activity and 6.28% recovery. The molecular weight of the purified enzyme was estimated to be 28 kDa by SDS-PAGE and gel filtration. The purified enzyme exhibited high fibrinolytic activity on fibrin agar plates.Interestingly, the enzyme was highly active over a wide range of pH from 7.0 to 12.0, with an optimum at pH 9.0. The relative activities at pH 10.0 and 11.0 were 97.8% and 85.2% of that at pH 9.0. The optimum temperature for enzyme activity was 60 °C. The activity of subtilisin BSF1 was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The N-terminal amino acid sequence of the first 11 amino acids (aa) of the purified fibrinolytic enzyme was AQSVPYGISQI.The bsf1 gene encoding the subtilisin BSF1 was isolated and its DNA sequence was determined. The bsf1 gene consisted of 1146 bp encoding a pre-pro-protein of 381 amino acids organized into a signal peptide (29 aa), a pro-peptide (77 aa) and a mature domain (275 aa). The deduced amino acids sequence of the mature enzyme (BSF1) differs from those of nattokinase from B. subtilis natto and subtilisin DFE from Bacillus amyloliquefaciens DC-4 by 5 and 39 amino acids, respectively.  相似文献   

8.
Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase is synthesized as a pro-enzyme having an 11-amino acid leader. Maturation requires insertion of a [4Fe-4S] cluster and processing of the pro-peptide to expose an NH2-terminal active site cysteine residue. Point and deletion mutations were constructed in the leader region. These mutations affect processing and enzyme activities. Processing of the leader is dependent upon glutamic acid residues at positions -2 and -1 as well as Cys1. In addition, processing requires a pro-peptide longer than 3 residues. Function of the active site cysteine is dependent on pro-peptide processing. Enzyme purified from a pro-peptide deletion strain has activity and iron content that is comparable to the wild type. These results establish that the pro-peptide is not essential for enzyme maturation, but they leave unanswered the question of pro-peptide function.  相似文献   

9.
The structural gene for a subtilisin J from Bacillus stearothermophilus NCIMB10278 was cloned in Bacillus subtilis using pZ124 as a vector, and its nucleotide sequence was determined. The nucleotide sequence revealed only one large open reading frame, composed of 1,143 base pairs and 381 amino acid residues. A Shine-Dalgarno sequence was found 8 bp upstream from the translation start site (GTG). The deduced amino acid sequence revealed an N-terminal signal peptide and pro-peptide of 106 residues followed by the mature protein comprised of 275 residues. The productivity of subtilisin in the culture broth of the Bacillus subtilis was about 46-fold higher than that of the Bacillus stearothermophilus. The amino acid sequence of the extracellular alkaline protease subtilisin J is highly homologous to that of subtilisin E and it shows 69% identity with subtilisin Carlsberg, 89% with subtilisin BPN' and 70% with subtilisin DY. Some properties of the subtilisin J that had been purified from the Bacillus subtilis were examined. The subtilisin J has alkaline pH characteristics and a molecular weight of 27,500. It retains about 50% of its activity even after treatment at 60 degrees C for 30 min in the presence of 2 mM calcium chloride.  相似文献   

10.
Several proteases, including the bacterial serine protease subtilisins, require the assistance of the N-terminal pro-sequence of precursors to produce active, mature enzymes. Upon completion of folding, the pro-sequence is autocatalytically degraded because it is not necessary for the activity or stability of folded, mature cognates of the original enzymes. Therefore, the pro-sequence functions as an intramolecular chaperone that guides correct folding of the protease domain. Interestingly, Shinde et al. proposed a new theory of "protein memory" in which an identical polypeptide can fold into an altered conformation with different secondary structure, stability and specificities through a mutated pro-sequence [Shinde et al. (1997) Nature 389:520–522]. We also showed that the autoprocessing efficiency was improved by modifications in the pro-sequence of mutant subtilisins with altered substrate specificity. Further, the pro-sequence from a subtilisin homologue was found to chaperone the intramolecular folding of denatured subtilisin. These results indicate that engineering of the pro-sequence, i.e., site-directed and/or random mutagenesis, chimeras and gene shuffling between members of the family, would be a useful method for improving the functions of autoprocessing proteases. Conventional protein engineering techniques have thus far employed mutagenesis in the protease domain to modify the enzymatic properties. This new approach, which we term "pro-sequence engineering", is not only an important tool for studying the mechanism of protein folding, but also a promising technology for creating unique proteases with various beneficial properties.  相似文献   

11.
In vitro processing of pro-subtilisin produced in Escherichia coli   总被引:23,自引:0,他引:23  
In a previous paper (Ikemura, H., Takagi, H., and Inouye, M. (1987) J. Biol. Chem. 262, 7859-7864), we demonstrated that the pro-sequence consisting of 77 amino acid residues at the amino terminus of subtilisin is essential for the production of active subtilisin. When the aggregates of pro-subtilisin produced in Escherichia coli were solubilized in 6 M guanidine hydrochloride and dialyzed against 200 mM sodium phosphate buffer (pH 7.1 or 6.2), pro-subtilisin was efficiently processed to active subtilisin. When more than 14 residues were removed from the amino terminus of the pro-sequence, active subtilisin was no longer produced as in the in vivo experiments. Similarly, active subtilisin would not renature under the same conditions once solubilized in guanidine hydrochloride. When the aspartic acid residue at the active site (Asp32) was altered to asparagine, processing of mutant pro-subtilisin was not observed even in the presence of wild-type pro-subtilisin. Inhibitors such as phenylmethanesulfonyl fluoride or Streptomyces subtilisin inhibitor did not block the processing of wild-type pro-subtilisin. These facts indicate that processing or pro-subtilisin is carried out by an intramolecular, self-processing mechanism. When the sample was dialyzed against 20 mM sodium phosphate (pH 6.2), no active subtilisin was found, suggesting that the highly charged nature of the pro-sequence plays an important role in the process of refolding of denatured pro-subtilisin.  相似文献   

12.
The 77 residue propeptide at the N-terminal end of subtilisin E plays an essential role in subtilisin folding as a tailor-made intramolecular chaperone. Upon completion of folding, the propeptide is autoprocessed and removed by subtilisin digestion. This propeptide-mediated protein folding has been used as a paradigm for the study of protein folding. Here, we show by three independent methods, that the propeptide domain and the subtilisin domain show distinctive intrinsic stability that is obligatory for efficient autoprocessing of the propeptide domain. Two tryptophan residues, Trp106 and Trp113, on the surface of subtilisin located on one of the two helices that form the interface between the propeptide and the subtilisin domains play a key role in maintaining the distinctive instability of the propeptide domain, after completion of folding. When either of the Trp residues was substituted with Tyr, the characteristic biphasic heat denaturation profile of two domains unfolding was not observed, resulting in a single transition of denaturation. The results provide evidence that the propeptide not only plays an essential role in subtilisin folding, but upon completion of folding it behaves as an independent domain. Once the propeptide-mediated folding is completed, the propeptide domain is readily eliminated without interference from the subtilisin domain. This "autotomic" behavior of the propeptide may be a prevailing principle in propeptide-mediated protein folding.  相似文献   

13.
Modification of substrate specificity of an autoprocessing enzyme is accompanied by a risk of significant failure of self-cleavage of the pro-region essential for activation. Therefore, to enhance processing, we engineered the pro-region of mutant subtilisins E of Bacillus subtilis with altered substrate specificity. A high-activity mutant subtilisin E with Ile31Leu replacement (I31L) as well as the wild-type enzyme show poor recognition of acid residues as the P1 substrate. To increase the P1 substrate preference for acid residues, Glu156Gln and Gly166Lys/Arg substitutions were introduced into the I31L gene based upon a report on subtilisin BPN' [Wells et al. (1987) Proc. Natl. Acad. Sci. USA 84, 1219-1223]. The apparent P1 specificity of four mutants (E156Q/G166K, E156Q/G166R, G166K, and G166R) was extended to acid residues, but the halo-forming activity of Escherichia coli expressing the mutant genes on skim milk-containing plates was significantly decreased due to the lower autoprocessing efficiency. A marked increase in active enzyme production occurred when Tyr(-1) in the pro-region of these mutants was then replaced by Asp or Glu. Five mutants with Glu(-2)Ala/Val/Gly or Tyr(-1)Cys/Ser substitution showing enhanced halo-forming activity were further isolated by PCR random mutagenesis in the pro-region of the E156Q/G166K mutant. These results indicated that introduction of an optimum arrangement at the cleavage site in the pro-region is an effective method for obtaining a higher yield of active enzymes.  相似文献   

14.
A cDNA for oxidosqualene:lanosterol cyclase (OSLC) was cloned and sequenced from the fungus Cephalosporium caerulens, that produces a steroidal antibiotic, helvolic acid. A 2280 bp open reading frame encoded an M(r) 87078 protein with 760 amino acids. The cDNA was functionally expressed in the OSLC-deficient mutant GIL77 strain of Saccharomyces cerevisiae. A truncated recombinant enzyme (Delta49N) starting from the second methionine (M50) residue was completely inactive, suggesting that ca. 30 additional hydrophilic amino acid residues at the N-terminal are essential for the folding of the enzyme. Furthermore, the active site residues, H234 and D456 (numbering in S. cerevisiae OSLC), were chosen for site-directed mutagenesis experiments; H234E, H234Y, H234F, D456E, D456N, and D456H mutants were inactive, while H234W and H234K mutants retained lanosterol-forming activity.  相似文献   

15.
Methyl N alpha-acetyl-2-(alkylthio)-L-tryptophanoates bearing different alkylthio groups were synthesized and employed as substrates for alpha-chymotrypsin and Carlsberg subtilisin in an attempt to investigate the properties of the hydrophobic pocket or cleft (S1 subsite) of the enzymes which accommodates the side-chain of the P1 amino acid residue of the substrates. The derivatives with ethylthio, 2-hydroxyethylthio, 2,3-dihydroxypropylthio, 2-aminoethylthio, carboxymethylthio, 2-carboxyethylthio, 1,2-dicarboxyethylthio, and 2-amino-2-carboxyethylthio (cysteinyl-S) groups were hydrolyzed by alpha-chymotrypsin but with kcat/Km values 4.6 to 15 times smaller than that of methyl N alpha-acetyl-L-tryptophanoate, due mainly to larger Km values. The glutathionyl derivative was only weakly bound to the enzyme. Analyses of the kinetic parameters suggested that the S1 pocket of alpha-chymotrypsin is rather more spacious than has been supposed and is able to interact flexibly with substrates so as to orient the scissile bond to the catalytic residues. On the other hand, none of the derivatives were hydrolyzed by Carlsberg subtilisin but they all inhibited the enzyme with Ki values which are generally smaller than the Km values for N alpha-acetyl-L-aromatic (modified aromatic) amino acid methyl esters. The S1 cleft of Carlsberg subtilisin interacts rather strongly with the derivatives but lacks the flexibility necessary for catalysis.  相似文献   

16.
A Bauhinia variegata trypsin inhibitor (BvTI) cDNA fragment was cloned into the pCANTAB5E phagemid. The clone pAS 1.1.3 presented a cDNA fragment of 733 bp, including the coding region for a mature BvTI protein comprising 175 amino acid residues. The deduced amino acid sequence for BvTI confirmed it as a member of the Kunitz-type plant serine proteinase inhibitor family. The BvTI cDNA fragment encoding the mature form was cloned into the expression vector, pET-14b, and ex-pressed in E. coli BL21 (DE3) pLysS in an active form. In addition, a BvTI mutant form, r(mut)BvTI, with a Pro residue as the fifth amino acid in place of Leu, was produced. The recombinant proteins, rBvTI and r(mut)BvTI, were purified on a trypsin-Sepharose column, yielding 29 and 1.44 mg/l of active protein, respectively, and showed protein bands of approximately 21.5 kDa by SDS-PAGE. Trypsin inhibition activity was comparable for rBvTI (Ki=4 nM) and r(mut)BvTI (Ki=6 nM). Our data suggest that the Leu to Pro substitution at the fifth amino-terminal residue was not crucial for proteinase inhibition.  相似文献   

17.
BACKGROUND: Members of the subtilisin family of serine proteases usually have a conserved asparagine residue that stabilizes the oxyanion transition state of peptide-bond hydrolysis. Yeast Kex2 protease is a member of the subtilisin family that differs from the degradative subtilisin proteases in its high substrate specificity, it processes pro-alpha-factor, the precursor of the alpha-factor mating pheromone of yeast, and also removes the pro-peptide from its own precursor by an intramolecular cleavage reaction. Curiously, the mammalian protease PC2, a Kex2 homolog that is likely to be required for pro-insulin processing, has an aspartate in place of asparagine at the 'oxyanion hole'. RESULTS: We have tested the effect of making substitutions of the conserved oxyanion-hole asparagine (Asn 314) of the Kex2 protease. To do this, we have developed a rapid method of site-directed mutagenesis, involving homologous recombination of a polymerase chain reaction product in yeast. Using this method, we have substituted alanine or aspartate for Asn 314 in a form of Kex2 engineered for secretion. Transformants expressing the two mutant enzymes could be identified by failure either to produce mature alpha-factor or to mate. The Ala 314 enzyme was unstable but the Asp 314 enzyme accumulated to a high level, so that it could be purified and its activity towards various substrates tested in vitro. We found that, with three peptides that are good substrates of wild-type Kex2, the k(cal) of the Asp 314 enzyme was reduced approximately 4500-fold and its K(M) approximately 4-fold, relative to the wild-type enzyme. For the peptide substrate corresponding to the cleavage site of pro-alpha-factor, however, k(cat) of the Asp 314 enzyme was reduced only 125-fold, while the K(m) was increased 3-fold. Despite its reduced catalytic activity, however, processing of the mutant enzyme in vivo - by the intramolecular cleavage that removes its amino-terminal pro-domain - occurs at an unchanged rate. CONCLUSIONS: The effects of the Asn 314-Asp substitution reveal contributions to the reaction specificity of the Kex2 protease of substrate residues amino-terminal to the pair of basic residues at the cleavage site. Aspartate at the oxyanion hole appears to confer k(caf) discrimination between substrates by raising the energy barrier for productive substrate binding: this may have implications for pro-insulin processing by the PC2 protease, which has an aspartate at the equivalent position. The rate of intramolecular cleavage of pro-Kex2 may be limited by a step other than catalysis, presumably protein folding.  相似文献   

18.
We have synthesized and optimized a high-yielding Escherichia coli expression system to produce trypsinogen from anchovy Engraulis japonicus and have developed conditions for its successful refolding. Recombinant anchovy trypsinogen precipitated in E. coli Rosetta (DE3) placI strain as inclusion bodies was denatured by 6 M guanidine-HCl followed by refolding with drop wise addition to a large excess of a folding buffer containing 0.5 M non-detergent sulfobetaine (NDSB-251) and a redox potential of oxidized and reduced glutathiones. The folded trypsinogen was autocatalytically activated to its mature form, trypsin, and purified with a MonoQ ion-exchange column. NH2-terminal amino acid sequencings revealed that E. coli efficiently processed NH2-terminal methionine residue from the expressed trypsinogen and that trypsinogen was activated at the correct site to generate active trypsin. The recombinant enzyme showed kinetic properties comparable to those of the native enzyme and demonstrated a typical cleavage preference for arginine over lysine residue against a protein substrate. The optimized expression and folding procedures yielded 12 mg of purified, active trypsin from 1 L of bacterial culture or 45 g wet weight cells, which is quite enough for various analytical and semipreparative purposes.  相似文献   

19.
The gene for a new subtilisin from the alkaliphilic Bacillus sp. KSM-LD1 was cloned and sequenced. The open reading frame of the gene encoded a 97 amino-acid prepro-peptide plus a 307 amino-acid mature enzyme that contained a possible catalytic triad of residues, Asp32, His66, and Ser224. The deduced amino acid sequence of the mature enzyme (LD1) showed approximately 65% identity to those of subtilisins SprC and SprD from alkaliphilic Bacillus sp. LG12. The amino acid sequence identities of LD1 to those of previously reported true subtilisins and high-alkaline proteases were below 60%. LD1 was characteristically stable during incubation with surfactants and chemical oxidants. Interestingly, an oxidizable Met residue is located next to the catalytic Ser224 of the enzyme as in the cases of the oxidation-susceptible subtilisins reported to date.  相似文献   

20.
Subtilisin E, a serine protease from Bacillus subtilis, requires an N-terminal propeptide for its correct folding. The propeptide is autocleaved and digested by the subtilisin domain upon proper folding. Here we investigated the individual roles of the three Trp residues within the subtilisin domain (Trp106, Trp113 and Trp241) on propeptide processing, enzymatic activity and stability of subtilisin. When the propeptide processing was examined by SDS-PAGE after refolding by rapid dilution, the mutation at either position Trp106 or Trp113 was found to significantly delay the propeptide processing, while the mutation at Trp241 had no effect. Far-UV circular dichroism (CD) spectra of the mutants revealed that the mutations at the three positions did not affect appreciably the alpha-helix content of subtilisin. Secondary structure thermal unfolding monitored by CD spectroscopy revealed that none of the tryptophan residues had any significant effect on the stability of mature subtilisin. The enzymatic activity measurements showed that only Trp106 plays a major role in the enzymatic activity of subtilisin E. These results demonstrate that both Trp106 and Trp113 play a specific role in propeptide processing and enzymatic activity, while Trp241 plays no considerable role on any of these activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号