首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In multicellular organisms, single-fluorophore imaging is obstructed by high background. To achieve a signal/noise ratio conducive to single-molecule imaging, we adapted reflected light-sheet microscopy (RLSM) to image highly opaque late-stage Drosophila embryos. Alignment steps were modified by means of commercially available microprisms attached to standard coverslips. We imaged a member of the septate-junction complex that was used to outline the three-dimensional epidermal structures of Drosophila embryos. Furthermore, we show freely diffusing single 10 kDa Dextran molecules conjugated to one to two Alexa647 dyes inside living embryos. We demonstrate that Dextran diffuses quickly (∼6.4 μm2/s) in free space and obeys directional movement within the epidermal tissue (∼0.1 μm2/s). Our single-particle-tracking results are supplemented by imaging the endosomal marker Rab5-GFP and by earlier reports on the spreading of morphogens and vesicles in multicellular organisms. The single-molecule results suggest that RLSM will be helpful in studying single molecules or complexes in multicellular organisms.  相似文献   

2.
Tomographic phase microscopy   总被引:1,自引:0,他引:1  
We report a technique for quantitative three-dimensional (3D) mapping of refractive index in live cells and tissues using a phase-shifting laser interferometric microscope with variable illumination angle. We demonstrate tomographic imaging of cells and multicellular organisms, and time-dependent changes in cell structure. Our results will permit quantitative characterization of specimen-induced aberrations in high-resolution microscopy and have multiple applications in tissue light scattering.  相似文献   

3.
Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 μm. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.  相似文献   

4.
Localization microscopy approaches allowing an optical resolution down to the single-molecule level in fluorescence-labeled biostructures have already found a variety of applications in cell biology, as well as in virology. Here, we focus on some perspectives of a special localization microscopy embodiment, spectral precision distance/position determination microscopy (SPDM). SPDM permits the use of conventional fluorophores or fluorescent proteins together with standard sample preparation conditions employing an aqueous buffered milieu and typically monochromatic excitation. This allowed superresolution imaging and studies on the aggregation state of modified tobacco mosaic virus particles on the nanoscale with a single-molecule localization accuracy of better than 8 nm, using standard fluorescent dyes in the visible spectrum. To gain a better understanding of cell entry mechanisms during influenza A virus infection, SPDM was used in conjunction with algorithms for distance and cluster analyses to study changes in the distribution of virus particles themselves or in the distribution of infection-related proteins, the hepatocyte growth factor receptors, in the cell membrane on the single-molecule level. Not requiring TIRF (total internal reflection) illumination, SPDM was also applied to study the molecular arrangement of gp36.5/m164 glycoprotein (essentially associated with murine cytomegalovirus infection) in the endoplasmic reticulum and the nuclear membrane inside cells with single-molecule resolution. On the basis of the experimental evidence so far obtained, we finally discuss additional application perspectives of localization microscopy approaches for the fast detection and identification of viruses by multi-color SPDM and combinatorial oligonucleotide fluorescence in situ hybridization, as well as SPDM techniques for optimization of virus-based nanotools and biodetection devices.  相似文献   

5.
Total internal reflection fluorescence microscopy (TIRFM) has been proven to be an extremely powerful technique in animal cell research for generating high contrast images and dynamic protein conformation information. However, there has long been a perception that TIRFM is not feasible in plant cells because the cell wall would restrict the penetration of the evanescent field and lead to scattering of illumination. By comparative analysis of epifluorescence and TIRF in root cells, it is demonstrated that TIRFM can generate high contrast images, superior to other approaches, from intact plant cells. It is also shown that TIRF imaging is possible not only at the plasma membrane level, but also in organelles, for example the nucleus, due to the presence of the central vacuole. Importantly, it is demonstrated for the first time that this is TIRF excitation, and not TIRF-like excitation described as variable-angle epifluorescence microscopy (VAEM), and it is shown how to distinguish the two techniques in practical microscopy. These TIRF images show the highest signal-to-background ratio, and it is demonstrated that they can be used for single-molecule microscopy. Rare protein events, which would otherwise be masked by the average molecular behaviour, can therefore be detected, including the conformations and oligomerization states of interacting proteins and signalling networks in vivo. The demonstration of the application of TIRFM and single-molecule analysis to plant cells therefore opens up a new range of possibilities for plant cell imaging.  相似文献   

6.
In flowering plants, the somatic-to-reproductive cell fate transition is marked by the specification of spore mother cells (SMCs) in floral organs of the adult plant. The female SMC (megaspore mother cell, MMC) differentiates in the ovule primordium and undergoes meiosis. The selected haploid megaspore then undergoes mitosis to form the multicellular female gametophyte, which will give rise to the gametes, the egg cell and central cell, together with accessory cells. The limited accessibility of the MMC, meiocyte and female gametophyte inside the ovule is technically challenging for cytological and cytogenetic analyses at single cell level. Particularly, direct or indirect immunodetection of cellular or nuclear epitopes is impaired by poor penetration of the reagents inside the plant cell and single-cell imaging is demised by the lack of optical clarity in whole-mount tissues.Thus, we developed an efficient method to analyze the nuclear organization and chromatin modification at high resolution of single cell in whole-mount embedded Arabidopsis ovules. It is based on dissection and embedding of fixed ovules in a thin layer of acrylamide gel on a microscopic slide. The embedded ovules are subjected to chemical and enzymatic treatments aiming at improving tissue clarity and permeability to the immunostaining reagents. Those treatments preserve cellular and chromatin organization, DNA and protein epitopes. The samples can be used for different downstream cytological analyses, including chromatin immunostaining, fluorescence in situ hybridization (FISH), and DNA staining for heterochromatin analysis. Confocal laser scanning microscopy (CLSM) imaging, with high resolution, followed by 3D reconstruction allows for quantitative measurements at single-cell resolution.  相似文献   

7.
8.
Flors C 《Biopolymers》2011,95(5):290-297
With the expansion of super-resolution fluorescence microscopy methods, it is now possible to access the organization of cells and materials at the nanoscale by optical means. This review discusses recent progress in super-resolution imaging of isolated and cell DNA using single-molecule localization methods. A high labeling density of photoswitchable fluorophores is crucial for these techniques, which can be provided by sequence independent DNA stains in which photoblinking reactions can be induced. In particular, unsymmetrical cyanine intercalating dyes in combination with special buffers can be used to image isolated DNA with a spatial resolution of 30-40 nm. For super-resolution imaging of chromatin, cell permeant cyanine dyes that bind the minor groove of DNA have the potential to become a useful alternative to the labeling of histones and other DNA-associated proteins. Other recent developments that are interesting in this context such as high density labeling methods or new DNA probes with photoswitching functionalities are also surveyed. Progress in labeling, optics, and single-molecule localization algorithms is being rapid, and it is likely to provide real insight into DNA structuring in cells and materials.  相似文献   

9.
Recent advances in fluorescence microscopy have extended the spatial resolution to the nanometer scale. Here, we report an engineered photoconvertible fluorescent protein (pcFP) variant, designated as mMaple, that is suited for use in multiple conventional and super-resolution imaging modalities, specifically, widefield and confocal microscopy, structured illumination microscopy (SIM), and single-molecule localization microscopy. We demonstrate the versatility of mMaple by obtaining super-resolution images of protein organization in Escherichia coli and conventional fluorescence images of mammalian cells. Beneficial features of mMaple include high photostability of the green state when expressed in mammalian cells and high steady state intracellular protein concentration of functional protein when expressed in E. coli. mMaple thus enables both fast live-cell ensemble imaging and high precision single molecule localization for a single pcFP-containing construct.  相似文献   

10.
We report that single (or selective) plane illumination microscopy (SPIM), combined with a new deconvolution algorithm, provides a three-dimensional spatial resolution exceeding that of confocal fluorescence microscopy in large samples. We demonstrate this by imaging large living multicellular specimens obtained in a three-dimensional cell culture. The ability to rapidly image large samples at high resolution with minimal photodamage provides new opportunities especially for the study of subcellular processes in large living specimens.  相似文献   

11.
Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.  相似文献   

12.
BackgroundSingle-molecule fluorescence imaging (smFI) has evolved into a valuable method used in biophysical and biochemical studies as it can observe the real-time behavior of individual protein molecules, enabling understanding of their detailed dynamic features. smFI is also closely related to other state-of-the-art microscopic methods, optics, and nanomaterials in that smFI and these technologies have developed synergistically.Scope of reviewThis paper provides an overview of the recently developed single-molecule fluorescence microscopy methods, focusing on critical techniques employed in higher-precision measurements in vitro and fluorescent nanodiamond, an emerging promising fluorophore that will improve single-molecule fluorescence microscopy.Major conclusionssmFI will continue to improve regarding the photostability of fluorophores and will develop via combination with other techniques based on nanofabrication, single-molecule manipulation, and so on.General significanceQuantitative, high-resolution single-molecule studies will help establish an understanding of protein dynamics and complex biomolecular systems.  相似文献   

13.
14.
Combined with the availability of highly purified, fluorescently labeled in vitro translation systems, the advent of single-molecule fluorescence imaging has ushered in a new era in high-resolution mechanistic studies of ribosome-catalyzed protein synthesis, or translation. Together with ensemble biochemical investigations of translation and structural studies of functional ribosomal complexes, in vitro single-molecule fluorescence imaging of protein synthesis is providing unique mechanistic insight into this fundamental biological process. More recently, rapidly evolving breakthroughs in fluorescence-based molecular imaging in live cells with sub-diffraction-limit spatial resolution and ever-increasing temporal resolution provide great promise for conducting mechanistic studies of translation and its regulation in living cells. Here we review the remarkable recent progress that has been made in these fields, highlight important mechanistic insights that have been gleaned from these studies thus far, and discuss what we envision lies ahead as these approaches continue to evolve and expand to address increasingly complex mechanistic and regulatory aspects of translation.  相似文献   

15.
The central role of Ca2+ signalling in plants is now well established. Much of our recent research has been based on the premise that the direct demonstration of signal-response coupling via Ca2+ requires the imaging or measurement of cytosolic free Ca2+ in living cells. Methods (confocal microscopy, fluorescence ratio imaging and photon counting imaging) which we use for imaging Ca2+ with fluorescent dyes or recombinant aequorin, are described. Approaches for using dyes are now routine for many plant cells. However, the imaging Ca2+ in whole tissues of plants genetically transformed with the aequorin gene is a very new development. We predict that this method, first employed in our laboratory, will bring about a revolution in our understanding of Ca2+ signalling at the multicellular level.  相似文献   

16.
17.
Atomic force microscopy (AFM) techniques provide a versatile platform for imaging and manipulating living cells to single-molecule resolution, thereby enabling us to address pertinent questions in key areas of cell biology, including cell adhesion and signalling, embryonic and tissue development, cell division and shape, and microbial pathogenesis. In this review, we describe the principles of AFM, and survey recent breakthroughs made in AFM-based cell nanoscopy, showing how the technology has increased our molecular understanding of the organization, mechanics, interactions and processes of the cell surface. We also discuss the advantages and limitations of AFM techniques, and the challenges remaining to be addressed in future research.  相似文献   

18.
Localization of mRNA and small RNAs (sRNAs) is important for understanding their function. Fluorescent in situ hybridization (FISH) has been used extensively in animal systems to study the localization and expression of sRNAs. However, current methods for fluorescent in situ detection of sRNA in plant tissues are less developed. Here we report a protocol (sRNA‐FISH) for efficient fluorescent detection of sRNAs in plants. This protocol is suitable for application in diverse plant species and tissue types. The use of locked nucleic acid probes and antibodies conjugated with different fluorophores allows the detection of two sRNAs in the same sample. Using this method, we have successfully detected the co‐localization of miR2275 and a 24‐nucleotide phased small interfering RNA in maize anther tapetal and archesporial cells. We describe how to overcome the common problem of the wide range of autofluorescence in embedded plant tissue using linear spectral unmixing on a laser scanning confocal microscope. For highly autofluorescent samples, we show that multi‐photon fluorescence excitation microscopy can be used to separate the target sRNA‐FISH signal from background autofluorescence. In contrast to colorimetric in situ hybridization, sRNA‐FISH signals can be imaged using super‐resolution microscopy to examine the subcellular localization of sRNAs. We detected maize miR2275 by super‐resolution structured illumination microscopy and direct stochastic optical reconstruction microscopy. In this study, we describe how we overcame the challenges of adapting FISH for imaging in plant tissue and provide a step‐by‐step sRNA‐FISH protocol for studying sRNAs at the cellular and even subcellular level.  相似文献   

19.
Super-resolution fluorescence microscopy allows for obtaining images with a resolution of 10–20 nm, far exceeding the diffraction limit of conventional optical microscopy (200–350 nm), and provides an opportunity to study in detail the subcellular structures and individual proteins in both living and fixed cells. Among these methods, single-molecule localization microscopy (SMLM) has become widespread. SMLM techniques are based on special fluorophores capable of photoswitching. The paper presents a classification of such fluorophores and describes their photoswitching mechanisms and successful practical applications. We discuss recent progress and prospects for the development of new effective labels suitable for SMLM.  相似文献   

20.
The adherens junction (AJ) comprises multi-protein complexes required for cell-cell adhesion in embryonic development and adult tissue homeostasis. Mutations in key proteins and mis-regulation of AJ adhesive properties can lead to pathologies such as cancer. In recent years, the zebrafish has become an excellent model organism to integrate cell biology in the context of a multicellular organization. The combination of classical genetic approaches with new tools for live imaging and biophysical approaches has revealed new aspects of AJ biology, particularly during zebrafish gastrulation. These studies have resulted in progress in understanding the relationship between cell-cell adhesion, cell migration and plasma membrane blebbing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号