共查询到20条相似文献,搜索用时 0 毫秒
1.
Gender differences in oxidative stress in spinal cord of rats submitted to repeated restraint stress 总被引:1,自引:0,他引:1
Behavioral and neurochemical gender-specific effects have been observed following repeated stress. The aim of this study is to verify the effects of repeated restraint stress on free radical production (evaluated by DCF test), lipoperoxidation (evaluated by TBARS levels), and total antioxidant reactivity (TAR) in the spinal cord of male and female rats. Results demonstrate no effect on lipoperoxidation; chronic stress decreased TAR both in male and female spinal cord. In addition, gender differences were observed both in TAR and in the production of free radicals, both being increased in females. These results may be relevant to the gender-specific differences observed after exposure to repeated stress. 相似文献
2.
The chemical reactions that may lead to the loss of seed viability were investigated both during the accelerated aging and natural aging of soybeans ( Glycine max Merrill cv. Chippewa 64). Under conditions of accelerated aging (36°C and 75% RH), fluorescence of soluble proteins accumulated, which was closely correlated with the loss of seed germinability and vigor. We were able to show this correlation by using partially purified proteins for the assay. Fluorescence also increased in seeds under good storage conditions (5°C for up to 21 years), although there was a less significant correlation between seed viability and the accumulation of fluorescent products during the time of natural aging. The rise in protein fluorescence is interpreted as an increase of Maillard products. The carbonyl content of soluble proteins (a measure of the oxidative damage) did not change significantly during either accelerated aging or natural aging: however the elimination of carbonyls during germination seemed to be hindered in seeds that had poor germination. The Maillard reaction may be a consequence of the formation of reducing sugars through a gradual hydrolysis of oligosaccharides during aging. Preliminary evidence from the natural aging study showed that, when seeds were in the glassy state, the sugar hydrolysis was inhibited. These results suggest that the Maillard reaction and oxidative reaction may play an important role in seed deterioration. 相似文献
3.
In the forebrain from male Wistar rats aged 5, 15 and 25 months, age-related putative alterations in the glutathione system (reduced and oxidized glutathione; redox index) were chronically induced by the administration in drinking water of free radical generators (hydrogen peroxide, ferrous chloride) or of inhibitors of endogenous free radical defenses (diethyl-dithio-carbamate, an inhibitor of superoxide dismutase activity). In hydrogen peroxide administered rats, both reduced glutathione and the cerebral glutathione redox index markedly declined as a function of aging, whereas oxidized glutathione consistently increased. In contrast, chronic iron intake failed to modify the reduced glutathione in forebrain from the rats of the different ages tested, whereas the oxidized glutathione was increased in the older brains. The chronic intake of diethyl-dithio-carbamate enhanced the concentrations of reduced glutathione in the forebrains from the rats of the different ages tested, the oxidized glutathione being unchanged. In 15-month-old rats submitted to chronic oxidative stress, ergot alkaloids (and particularly dihydroergocriptine) interfered with cerebral glutathione system, while papaverine was always ineffective. The comprehensive analysis of the data indicates that: (a) both the type of oxidative stress and the age of the animals modulate the cerebral responsiveness to the putative modifiers in the level of tissue free radicals; (b) aging magnifies the cerebral alterations induced by oxidative stress; the (c) cerebral glutathione system may be modified by metabolic rather than by circulatory interferences; (d) a balance between the various cerebral antioxidant defenses is present, the perturbation of an antioxidant system resulting in the compensatory modified activity of component(s) of another system. 相似文献
4.
Bhattacharya A Rahman M Sun D Fernandes G 《The Journal of nutritional biochemistry》2007,18(6):372-379
Life expectancy has increased considerably over the last century in the United States. It is expected that this longevity will be accompanied by an increase in the prevalence of osteoporosis and accompanying complications in the elderly population. Age-related loss of bone mass and bone fragility are major risk factors for osteoporosis, leading to an increased risk of fractures. Therefore, nutritional strategies and lifestyle changes that prevent age-related osteoporosis and improve the quality of life for the elderly population are urgently needed. Hence, the present study compared the effects of corn oil (CO; n-6 fatty acids; commonly present in Western diets) and fish oil (FO; n-3 fatty acids) on bone mineral density (BMD) in aging C57BL/6 female mice. After 6 months of dietary treatment, we found that 18-month-old FO-fed mice maintained higher BMD in different bone regions compared to CO-fed mice. These findings were accompanied by a decreased activity of pro-inflammatory cytokines, tumor necrosis factor-alpha and interleukin-6 in stimulated splenocytes; a nonsignificant but greater increase in bone formation markers alkaline phosphatase and osteocalcin in the serum; and lower osteoclast generation in bone marrow cell cultures in FO-fed mice. In conclusion, these findings suggest that providing n-3 fatty acids may have a beneficial effect on bone mass during aging by modulating bone formation and bone resorption factors. 相似文献
5.
The relationship between the rate of generation of superoxide radicals and the duration of hypoxia has been studied in isolated heart mitochondria with the use of the spin trap sodium 4,5dihydroxybenzene-1,3-disulfonate. The EPR spectra were recorded from a mitochondrial suspension placed in a gas-permeable capillary under conditions of regulated partial oxygen pressure. Earlier we have shown that the mitochondria isolated from perfused hearts after 30-min ischemia display a higher rate of superoxide generation than those from controls. However, in isolated mitochondria the EPR signal from 4,5-dihydroxybenzene-1,3-disulfonate increased already after 10-min hypoxia, but its intensity remained the same in the mitochondria subjected to 30-, 45-, and 60-min hypoxia. Thus, the isolated mitochondria in the incubation medium are less sensitive to hypoxia than the mitochondria from cardiomyocytes of an ischemic heart. 相似文献
6.
Sengodan Karthi 《Biological Rhythm Research》2015,46(1):1-12
Antioxidant enzymes form the first-line defense against free radicals damage in organisms. Their regulation depends mainly on the oxidant and antioxidant status of the cell, given that oxidants are their principal modulators. Therefore, the aim of the present study was to investigate the effect of melatonin on synthetic pyrethroid insecticide-induced antioxidative enzymes activity in Spodoptera litura larvae. In addition, activities of enzymatic antioxidants viz. superoxide dismutase (SOD), glutathione S-transferase (GST), catalase (CAT), glutathione reductase (GR), α, β-esterase, and acetylcholine esterase (AChE) were assessed. There was no significant change in GST levels in the melatonin-treated groups. Melatonin modulates cypermethrin-induced changes in the activities of esterase and AChE, whereas SOD, CAT, and GR activity was significantly increased in melatonin-treated samples when compared to control. In conclusion, the results of the current study revealed that SP toxicity activated oxidant systems in all antioxidant systems in some tissues of insects. Melatonin administration led to a marked increase in antioxidant activity and inhibited GST and AChE in most of the tissues studied. 相似文献
7.
《Chronobiology international》2013,30(9):1254-1263
The circadian clock regulates many cellular processes, notably including the cell cycle, metabolism and aging. Mitochondria play essential roles in metabolism and are the major sites of reactive oxygen species (ROS) production in the cell. The clock regulates mitochondrial functions by driving daily changes in NAD+ levels and Sirt3 activity. In addition to this central route, in the present study, we find that the expression of some mitochondrial genes is also rhythmic in the liver, and that there rhythms are disrupted by the ClockΔ19 mutation in young mice, suggesting that they are regulated by the core circadian oscillator. Related to this observation, we also find that the regulation of oxidative stress is rhythmic in the liver. Since mitochondria and ROS play important roles in aging, and mitochondrial functions are also disturbed by aging, these related observations prompt the compelling hypothesis that circadian oscillators influence aging by regulating ROS in mitochondria. During aging, the expression rhythms of some mitochondrial genes were altered in the liver and the temporal regulation over the dynamics of mitochondrial oxidative stress was disrupted. However, the expression of clock genes was not affected. Our results suggested that mitochondrial functions are combinatorially regulated by the clock and other age-dependent mechanism(s), and that aging disrupts mitochondrial rhythms through mechanisms downstream of the clock. 相似文献
8.
Cadmium has recently been shown to induce apoptosis in C6 glioma cells via disruption of the mitochondrial membrane potential and subsequent caspase 9-activation. Here we show that both H2O2 and CdCl2 induced apoptotic DNA fragmentation in C6 cells. The employment of glutathione as an antioxidant prevented the induction of apoptotic DNA fragmentation by cadmium completely and catalase strongly reduced cadmium-induced DNA fragmentation suggesting that cadmium exerts its apoptotic effects at least partly via the production of H2O2. Apoptosis may be induced by cadmium indirectly through formation of oxidative stress, e.g., by inhibition of antioxidant enzymes. After incubation of C6 cells with cadmium for short times (up to 4 h), we analyzed the formation of intracellular reactive oxygen species and cellular lipid peroxidation. After 1 h of incubation with inreasing concentrations of CdCl2 (1–500 M), no increase in dichlorofluorescein fluorescence was found. At variance, lipid peroxidation was slightly elevated after 2 h incubation with cadmium (50–100 M). Furthermore, we analyzed the modulation of markers for oxidative stress after prolonged (24 h) exposure to cadmium. The intracellular glutathione content as measured using the fluorescent probe monobromobimane was decreased after incubation with CdCl2 (0.5–10 M) for 24 h. Furthermore, we measured the effect of cadmium on the level of oxidized DNA lesions (predominantly 8-hydroxyguanine) using the bacterial Fpg-DNA-repair protein. After 24 h of incubation with 5 M CdCl2 we found a sixfold increase in Fpg-sensitive DNA-lesions. We conclude that short time incubations with cadmium (up to 4 h) caused only slight or insignificant effects on the generation of reactive oxygen species (formation of thiobarbituric acid reactive substances, fluorescence of dichlorofluorescein), whereas incubation with this heavy metal for 24 h lead to a decrease in intracellular glutathione concentration and an increase in oxidative DNA-lesions. Our data demonstrate that cadmium as similar to H2O2 is a potent inducer of apoptosis in C6 cells. Even if cadmium unlike Fenton-type metals can not produce reactive oxygen species directly, the apoptotic effects of cadmium at least in part are mediated via induction of oxidative stress. Because both apoptosis and oxidative stress are thought to play important roles in neurodegenerative diseases, low concentrations of cadmium that initiate programmed cell death may lead to a selective cell death in distinct brain regions via generation of oxidative stress. 相似文献
9.
Previous work has shown that primary skin-derived fibroblasts from long-lived pituitary dwarf mutants resist the lethal effects of many forms of oxidative and nonoxidative stress. We hypothesized that increased autophagy may protect fibroblasts of Pit-1(dw/dw) (Snell dwarf) mice from multiple forms of stress. We found that dwarf-derived fibroblasts had higher levels of autophagy, using LC3 and p62 as markers, in response to amino acid deprivation, hydrogen peroxide, and paraquat. Fibroblasts from dwarf mice also showed diminished phosphorylation of mTOR, S6K, and 4EBP1, consistent with the higher levels of autophagy in these cells after stress. Similar results were also observed in fibroblasts from mutant mice lacking growth hormone receptor (GHRKO mice) after amino acid withdrawal. Our results suggested that increased autophagy, regulated by TOR-dependent processes, may contribute to stress resistance in fibroblasts from long-lived mutant mice. 相似文献
10.
Leone M Bechah Y Meghari S Lepidi H Capo C Raoult D Mege JL 《FEMS immunology and medical microbiology》2007,50(3):396-400
The objective of this study was to investigate the effects of age on infection with Coxiella burnetii, the agent of Q fever. Bacterial burden and granuloma number were increased in the spleens of 14-month-old as compared with 1-month-old mice. This increase was not the result of an anti-inflammatory macrophage response, because inflammatory and anti-inflammatory cytokines were induced in macrophages from young mice but were repressed in mature mice. In addition, macrophage microbicidal competence was similar in mature and young mice. These results suggest the importance of individual host factors in the pathophysiology of an infectious disease such as Q fever. 相似文献
11.
《Autophagy》2013,9(11):1989-2005
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD. 相似文献
12.
13.
Ulcerative dermatitis (UD) is a common syndrome of unknown etiology that results in profound morbidity in C57BL/6 mice and lines on a C57BL/6 background. The lesions are due to severe pruritus-induced self-trauma, progressing from superficial excoriations to deep ulcerations. UD may be behavioral in origin, with ulcerative lesions resulting from self-mutilating behavior in response to unresolved inflammation or compulsion. Alternatively, abnormal oxidative damage may be a mechanism underlying UD. To evaluate whether UD behaves similarly to normal wounds, consistent with a secondary self-inflicted lesion, or is a distinct disorder with abnormal wound response, we evaluated expression levels of genes representing various arms of the oxidative stress response pathway UD-affected and unwounded C57BL/6J mice. No evidence indicated that UD wounds have a defect in the oxidative stress response. Our findings are consistent with an understanding of C57BL/6 UD lesions as typical rather than atypical wounds. 相似文献
14.
Mice selected for aggression and coping (long attack latency (LAL), reactive coping strategy; short attack latency (SAL), pro-active coping strategy) are a useful model for studying the physiological background of animal personalities. These mice also show a differential stress responsiveness, especially in terms of hypothalamic-pituitary-adrenal axis reactivity, to various challenges. Since the stress response can increase the production of reactive oxygen species, we predicted that the basic oxidative status of the lines could differ. We found that LAL showed higher serum antioxidant capacity (OXY) than SAL, while no differences emerged for reactive oxygen metabolites (ROMs) or the balance between ROMs and OXY, reflecting oxidative stress. Moreover, the lines showed inverse relationships between ROMs or OXY and body mass corrected for age. The results indicate that variation in oxidative status is heritable and linked to personality. This suggests that different animal personalities may be accompanied by differences in oxidative status, which may predict differences in longevity. 相似文献
15.
Stehle JR Weeks ME Lin K Willingham MC Hicks AM Timms JF Cui Z 《Biochimica et biophysica acta》2007,1770(1):79-86
In this study, we surveyed the profiles of mouse circulating proteins by 2-dimensional SDS-PAGE in different strains, sexes and ages. Among visible protein spots on 2-D gels with silver-staining, we identified a unique set of 7 seemingly-related proteins whose levels were consistently elevated in older C57BL/6 female mice. This set of 7 proteins was absent in C57BL/6 males or in BALB/c mice of either sex of any age. When C57BL/6 female mice were crossed with BALB/c males, the age-related increase of these proteins became sporadic and not linear in the F1 offspring. All 7 spots of this protein group were picked and subjected to identification by mass spectrometric analysis after tryptic digestion. The results showed that all 7 spots were different isoforms of alpha(1)B-glycoprotein with different degrees of post-translational modifications, such as phosphorylation. These results suggest that alpha(1)B-glycoprotein changes in mice in a sex and age dependent manner. 相似文献
16.
A. Russo M. Palumbo C. Scifo V. Cardile M.L. Barcellona M. Renis 《Cell biology and toxicology》2001,17(3):153-168
Ethanol intake is associated with increase in lipid peroxidation and formation of reactive oxygen species in different cerebral areas, in neurons as well as in astrocytes. The latter's integrity is essential for the normal growth of neurons. In previous studies we observed, in different cerebral areas of both acutely and chronically ethanol-treated rats, correlation between ethanol-induced oxidative stress and the increased expression of HSP70 (70 kDa heat shock proteins), chaperonins having a protective and stabilizing effect on stress–induced cell injury. In this study we examined, in vitro, the role of HSP70 on chronically ethanol-treated rat astrocytes by transfection with an anti-HSP70 antisense oligonucleotide. The results show that treatment with ethanol, from 50 to 100 mmol/L, induces a dose-dependent increase in the production of reactive oxygen species and of HSP70 levels, together with an impairment of the respiratory chain activity and a decrease in cell viability. In addition, our data indicate a drastic reduction of cellular metabolism in HSP70-deprived astrocytes, particularly when these cells were also ethanol-treated. In fact, transfection with HSP70 antisense induced moderate oxidative damage in control astrocytes and, consequently, a drastic decrease in the viability of ethanol-treated cells, with the mitochondrial functionality being particularly affected. Our results confirm that heat shock proteins confer a survival advantage to the astrocytes, preventing oxidative damage and nuclear DNA damage as well, and suggest the development of new drugs exerting a cytoprotective role either in physiological, or pathological conditions. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
17.
越来越多的证据表明压力可能会导致头发颜色发生变化,但其潜在机制尚不完全清楚。本研究采用雌性C57BL/6小鼠脚底电刺激结合束缚来建立慢性应激小鼠模型,并用比色法检测小鼠皮肤和B16F10黑色素瘤细胞中黑色素含量和酪氨酸酶活性;通过酶联免疫吸附实验(ELISA)测定小鼠皮肤中肿瘤坏死因子α(tumor necrosis factorα, TNF-α)、白细胞介素1β(interleukin-1β, IL-1β)和白细胞介素6 (interleukin-6, IL-6)含量;通过免疫荧光染色评估小鼠皮肤中核因子κB (nuclear factorκB, NFκB)/p65亚基的含量。结果显示:C57BL/6小鼠在慢性应激下由于皮肤中的毛囊黑色素细胞和酪氨酸酶活性降低,其毛皮颜色从暗色变为棕色。同时,慢性应激小鼠皮肤炎症反应增加,表现为皮肤中NFκB活性和TNF-α表达增加。在体外,TNF-α以剂量依赖性方式降低B16F10黑色素瘤细胞中黑色素生成和酪氨酸酶活性。以上结果表明,慢性应激通过降低雌性C57BL/6小鼠的毛囊黑色素细胞和酪氨酸酶活性来诱导皮毛颜色改变,而TNF-α可能在应激诱导的毛色改变中起重要作用。 相似文献
18.
Zimowska W Motyl T Skierski J Balasinska B Ploszaj T Orzechowski A Filipecki M 《Apoptosis : an international journal on programmed cell death》1997,2(6):529-539
The aim of this study was to explore the dose- and time-dependent effects of hydrophilic peroxyl radical initiator 2,2'azobis(2amidinopropane)dihydrochloride
(AAPH) on apoptosis, and on expression of Bcl-2 in L1210 leukaemic cells. We observed a progressive increase of intracellular
concentration of oxygen free radicals (OFR), manifested by the rise of 6-carboxy-2', 7'-dichlorodihydrofluorescein diacetate,
di(acetoxymethyl ester) oxidation, during 24 h of cells exposure to AAPH. Oxidative stress was associated with peroxidation
of cellular lipids, which was demonstrated by the measurement of thiobarbituric acid-reactive substances and conjugated dienes.
Analysis of cell viability by the use of trypan blue exclusion method revealed that AAPH reduced the ability of L1210 cells
to multiply or survive. AAPH increased the number of leukaemic cells with typical features of apoptosis like condensation
of chromatin, pyknosis and fragmentation of nucleus, followed by secondary necrosis. A characteristic internucleosomal DNA
cleavage, visualized as a DNA ‘ladder’ consisting of fragments that are multiples of 180-200 bp was also observed. The intensity
of apoptosis was dependent on AAPH concentration, time of cell exposure and the availability of growth factors and nutrients
in extracellular environment (FCS concentration). The novel observation is the increase of Bcl-2 level in L1210 leukaemic
cells surviving an oxidative stress. The level of Bcl-2 protein significantly rose with increasing AAPH concentration, and
time of cell exposure to this oxidant. This phenomenon could be the result of: (1) negative selection of cells with the lowest
expression of bcl-2, being more susceptible to oxidative stress and (2) increased synthesis and/or decreased degradation of
Bcl-2 protein as an adaptation to continuous OFR loading. In contrast to growth-promoting medium (10% FCS/RPMI), the maintenance
medium (2% FCS/RPMI) did not cover cell requirements for progressive Bcl-2 increase at the highest AAPH concentration (2 mM)
applied in this study. Several observations indicate that the increased Bcl-2 level in surviving L1210 leukaemic cells exposed
to oxidative stress is a symptom of their natural defence against cellular lipids peroxidation and apoptosis.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
19.
Changes in the level of oxidative damage to proteins in CD1 outbred mice γ irradiated with a dose of 3 Gy have been studied. The changes were estimated from the amount of carbonyl groups (CG) in the proteins. It was found that two hours after exposure to γ radiation, the amount of CG in the cytoplasmic and nuclear fractions of the liver, heart, brain, and spleen sharply increased. Two months after irradiation, the level of CG in the cytoplasmic and nuclear subcellular fractions of the liver and brain decreased to the level of CG in the control animals, which were not exposed to radiation. In the subcellular fractions of the heart and spleen, the increase in the degree of damage was more significant and a high level of damage was observed even two months after irradiation. An enhancement of the antigenic properties of proteins from the liver, heart, and spleen in the postirradiation period was found. Spleen proteins were most immunogenic. A comparison of the antigenic properties of proteins isolated from the tissues 60 days after irradiation revealed a correlation between the level of oxidative damage and the immunogenicity of the total protein fraction. 相似文献
20.
Takeshi Yamamoto Yoshitsugu Takabatake Tomonori Kimura Atsushi Takahashi Tomoko Namba Jun Matsuda 《Autophagy》2016,12(5):801-813
Autophagy plays an essential role in cellular homeostasis through the quality control of proteins and organelles. Although a time-dependent decline in autophagic activity is believed to be involved in the aging process, the issue remains controversial. We previously demonstrated that autophagy maintains proximal tubular cell homeostasis and protects against kidney injury. Here, we extend that study and examine how autophagy is involved in kidney aging. Unexpectedly, the basal autophagic activity was higher in the aged kidney than that in young kidney; short-term cessation of autophagy in tamoxifen-inducible proximal tubule-specific autophagy-deficient mice increased the accumulation of SQSTM1/p62- and ubiquitin-positive aggregates in the aged kidney. By contrast, autophagic flux in response to metabolic stress was blunted with aging, as demonstrated by the observation that transgenic mice expressing a green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3B fusion construct, showed a drastic increase of GFP-positive puncta in response to starvation in young mice compared to a slight increase observed in aged mice. Finally, proximal tubule-specific autophagy-deficient mice at 24 mo of age exhibited a significant deterioration in kidney function and fibrosis concomitant with mitochondrial dysfunction as well as mitochondrial DNA abnormalities and nuclear DNA damage, all of which are hallmark characteristics of cellular senescence. These results suggest that age-dependent high basal autophagy plays a crucial role in counteracting kidney aging through mitochondrial quality control. Furthermore, a reduced capacity for upregulation of autophagic flux in response to metabolic stress may be associated with age-related kidney diseases. 相似文献