首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have initiated a series of experiments to analyze the biosynthesis and oligomerization of Cx43 in cells containing other connexins through the expression of site-directed mutants and chimeric connexin polypeptides. Here we report studies concerning a mutant of Cx43 (Cx43tr) that has been truncated after amino acid 251 to remove most of the Cx43 carboxy-terminal region. In stably transfected HeLa cells, full length Cx43 localized primarily to appositional membranes while much more Cx43tr was observed in the cytoplasm. Both Cx43 and Cx43tr showed similar oligomerization profiles based on centrifugation through sucrose gradients. HeLaCx43tr cells showed limited transfer of microinjected Lucifer Yellow but did show electrical coupling. Co-expression of Cx43tr with Cx43 or Cx45 led to Cx43tr localization at appositional membranes and co-localization with the other connexins. Moreover, cells co-expressing Cx43tr with Cx43 or Cx45 showed extensive intercellular dye coupling. Thus, Cx43tr was able to oligomerize and form functional channels when expressed alone or with a compatible connexin, but it only formed plaques when co-expressed. These results suggest that the carboxyl tail of Cx43 is not important for oligomerization, but they implicate critical residues in the formation of gap junction plaques.  相似文献   

2.
Oligomerization of connexins is a critical step in gap junction channel formation. Some members of the connexin family can oligomerize with other members and form functional heteromeric hemichannels [e.g. Cx43 (connexin 43) and Cx45], but others are incompatible (e.g. Cx43 and Cx26). To find connexin domains important for oligomerization, we constructed chimaeras between Cx43 and Cx26 and studied their ability to oligomerize with wild-type Cx43, Cx45 or Cx26. HeLa cells co-expressing Cx43, Cx45 or Cx26 and individual chimaeric constructs were analysed for interactions between the chimaeras and the wild-type connexins using cell biological (subcellular localization by immunofluorescence), functional (intercellular diffusion of microinjected Lucifer yellow) and biochemical (sedimentation velocity through sucrose gradients) assays. All of the chimaeras containing the third transmembrane domain of Cx43 interacted with wild-type Cx43 on the basis of co-localization, dominant-negative inhibition of intercellular communication, and altered sedimentation velocity. The same chimaeras also interacted with co-expressed Cx45. In contrast, immunofluorescence and intracellular diffusion of tracer suggested that other domains influenced oligomerization compatibility when chimaeras were co-expressed with Cx26. Taken together, these results suggest that amino acids in the third transmembrane domain are critical for oligomerization with Cx43 and Cx45. However, motifs in different domains may determine oligomerization compatibility in members of different connexin subfamilies.  相似文献   

3.
Many cells express multiple connexins, the gap junction proteins that interconnect the cytosol of adjacent cells. Connexin43 (Cx43) channels allow intercellular transfer of Lucifer Yellow (LY, MW = 443 D), while connexin45 (Cx45) channels do not. We transfected full-length or truncated chicken Cx45 into a rat osteosarcoma cell line ROS-17/2.8, which expresses endogenous Cx43. Both forms of Cx45 were expressed at high levels and colocalized with Cx43 at plasma membrane junctions. Cells transfected with full-length Cx45 (ROS/Cx45) and cells transfected with Cx45 missing the 37 carboxyl-terminal amino acids (ROS/Cx45tr) showed 30-60% of the gap junctional conductance exhibited by ROS cells. Intercellular transfer of three negatively charged fluorescent reporter molecules was examined. In ROS cells, microinjected LY was transferred to an average of 11.2 cells/injected cell, while dye transfer between ROS/Cx45 cells was reduced to 3.9 transfer between ROS/Cx45 cells was reduced to 3.9 cells. In contrast, ROS/Cx45tr cells transferred LY to > 20 cells. Transfer of calcein (MW = 623 D) was also reduced by approximately 50% in ROS/Cx45 cells, but passage of hydroxycoumarin carboxylic acid (HCCA; MW = 206 D) was only reduced by 35% as compared to ROS cells. Thus, introduction of Cx45 altered intercellular coupling between cells expressing Cx43, most likely the result of direct interaction between Cx43 and Cx45. Transfection of Cx45tr and Cx45 had different effects in ROS cells, consistent with a role of the carboxyl-terminal domain of Cx45 in determining gap junction permeability or interactions between connexins. These data suggest that coexpression of multiple connexins may enable cells to achieve forms of intercellular communication that cannot be attained by expression of a single connexin.  相似文献   

4.
The relative expression of connexin43 and connexin45 modulates gap junctional communication and production of bone matrix proteins in osteoblastic cells. It is likely that changes in gap junction permeability are determined by the interaction between these two proteins. Cx43 interacts with ZO-1, which may be involved in trafficking of Cx43 or facilitating interactions between Cx43 and other proteins. In this study we sought to identify proteins that associate with Cx45 by coprecipitation in non-denaturing conditions. Cx45 was isolated with a 220-kDa protein that we identified as ZO-1. Under the same conditions, Cx43 also was isolated with anti-Cx45 antiserum from Cx45-transfected ROS cells (ROS/Cx45 cells). Cx43 antiserum could also coprecipitate ZO-1 in the transfected and untransfected ROS cells. Double label immunofluorescence studies showed that ZO-1, Cx43, and Cx45 colocalized at appositional membranes in ROS/Cx45 cells suggesting that all three proteins are normally associated in the cells. Additionally, we found that in vitro translated ZO-1 binds to the carboxyl-terminal of Cx45 indicating that there is a direct interaction between the carboxyl-terminal of Cx45 and ZO-1. These studies demonstrate that ZO-1 interacts with Cx45 as well as with Cx43, and suggest that the interaction of connexins with ZO-1 may play a role in regulating the composition of the gap junction and may modulate connexin-connexin interactions.  相似文献   

5.
Gap junction channels composed of connexins connect cells, allowing intercellular communication. Their cellular assembly involves a unique quality-control pathway. Some connexins [including connexin43 (Cx43) and Cx46] oligomerize in the trans-Golgi network following export of stabilized monomers from the endoplasmic reticulum (ER). In contrast, other connexins (e.g., Cx32) oligomerize early in the secretory pathway. Amino acids near the cytoplasmic aspect of the third transmembrane domain have previously been shown to determine this difference in assembly sites. Here, we characterized the oligomerization of two connexins expressed prominently in the vasculature, Cx37 and Cx40, using constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) or treatment with brefeldin A to block ER vesicle trafficking. Both methods led to intracellular retention of connexins, since the cells lacked gap junction plaques. Retention of Cx40 in the ER prevented it from oligomerizing, comparable to Cx43. By contrast, ER-retained Cx37 was partially oligomerized. Replacement of two amino acids near the third transmembrane domain of Cx43 (L152 and R153) with the corresponding amino acids from Cx37 (M152 and G153) resulted in early oligomerization in the ER. Thus, residues that allow Cx37 to oligomerize early in the secretory pathway could restrict its interactions with coexpressed Cx40 or Cx43 by favoring homomeric oligomerization, providing a structural basis for cells to produce gap junction channels with different connexin composition.  相似文献   

6.
Zonula occludens-1 (ZO-1), the most abundant known connexin-interacting protein in osteoblastic cells, associates with the carboxyl termini of both Cx43 and Cx45. To learn more about the role of the cormexin-ZO-1 interaction, we analyzed connexin trafficking and function in ROS 17/2.8 cells that were stably transfected either with full length Cx45 or with Cx45 lacking 34 or 37 amino acids on the carboxyl terminus (Cx45t34 or Cx45t37). All three proteins were transported to appositional membranes in the transfected cells: Cx45 and Cx45t34 displayed a punctate appositional membrane-staining pattern, while Cx45t37 staining at appositional membranes was more linear. Expression of Cx45 decreased gap junction communication as assayed by dye transfer, while expression of Cx45t34 or Cx45t37 increased the amount of dye transfer seen in these cells. We found that Cx43, Cx45 and Cx45t34 co-precipitated with ZO-1 in these cells, while Cx45t37 did not. We also found that Cx45t37 was much more soluble in 1% Triton X-100 than the other connexins examined. In addition, Cx45t37 migrated to a fraction of lighter buoyant density on sucrose flotation gradients than Cx43, Cx45, ZO-1 and Cx45t34. As ZO-1 is an actin-binding protein, this suggested that the differences in Cx45t37 solubility might be due to a difference between the interaction of gap junctions and the actin cytoskeleton in the ROS/Cx45t37 and in the other transfected ROS cells. To examine this possibility, the transfected ROS cells were stained with fluorescently labeled phalloidin and demonstrated that there was a notable loss of actin stress fibers in the ROS/Cx45t37 cells. These findings suggest that association with ZO-1 alters the plasma membrane localization of Cx45 by removing it from a lipid raft compartment and rendering it Triton-insoluble, presumably by promoting an interaction with the actin cytoskeleton; they also suggest that Cx45 has a complex binding interaction with ZO-1 that involves either an extended carboxyl terminal domain or two distinct binding sites.  相似文献   

7.
Gap junctional coupling among cumulus cells is important for oogenesis since its deficiency in mice leads to impaired folliculogenesis. Multiple connexins (Cx), the subunits of gap junction channels, have been found within ovarian follicles in several species but little is known about the connexins in human follicles. The aim of this study was to determine which connexins contribute to gap junctions in human cumulus cells and to explore the possible relationship between connexin expression and pregnancy outcome from in vitro fertilization (IVF). Cumulus cells were obtained from IVF patients undergoing intra-cytoplasmic sperm injection (ICSI). Connexin expression was examined by RT-PCR and confocal microscopy. Cx43 was quantified by immunoblotting and gap junctional coupling was measured by patch-clamp electrophysiology. All but 5 of 20 connexin mRNAs were detected. Of the connexin proteins detected, Cx43 forms numerous gap junction-like plaques but Cx26, Cx30, Cx30.3, Cx32 and Cx40 appeared to be restricted to the cytoplasm. The strength of gap junctional conductance varied between patients and was significantly and positively correlated with Cx43 level, but neither was correlated with patient age. Interestingly, Cx43 level and intercellular conductance were positively correlated with embryo quality as judged by cleavage rate and morphology, and were significantly higher in patients who became pregnant than in those who did not. Thus, despite the presence of multiple connexins, Cx43 is a major contributor to gap junctions in human cumulus cells and its expression level may influence pregnancy outcome after ICSI.  相似文献   

8.
DNAs coding for seven murine connexins (Cx) (Cx26, Cx31, Cx32, Cx37, Cx40, Cx43, and Cx45) are functionally expressed in human HeLa cells that were deficient in gap junctional communication. We compare the permeabilities of gap junctions comprised of different connexins to iontophoretically injected tracer molecules. Our results show that Lucifer yellow can pass through all connexin channels analyzed. On the other hand, propidium iodide and ethidium bromide penetrate very poorly or not at all through Cx31 and Cx32 channels, respectively, but pass through channels of other connexins. 4,6 Diamidino-2-phenylindole (DAPI) dihydrochloride shows less transfer among Cx31 or Cx43 transfectants. Neurobiotin is weakly transferred among Cx31 transfectants. Total junctional conductance in Cx31 or Cx45 transfected cells is only about half as high as in other connexin transfectants analyzed and does not correlate exactly with any of the tracer permeabilities. Permeability through different connexin channels appears to be dependent on the molecular structure of each tracer, i.e. size, charge and possibly rigidity. This supports the hypothesis that different connexin channels show different permeabilities to second messenger molecules as well as metabolites and may fulfill in this way their specific role in growth control and differentiation of cell types. In addition, we have investigated the function of heterotypic gap junctions after co-cultivation of two different connexin transfectants, one of which had been prelabeled with fluorescent dextran beads. Analysis of Lucifer yellow transfer reveals that HeLa cells expressing Cx31 (beta-type connexin) do not communicate with any other connexin transfectant tested but only with themselves. Two other beta-type connexin transfectants, HeLa-Cx26 and -Cx32, do not transmit Lucifer yellow to any of the alpha-type connexins analyzed. Among alpha- type connexins, Cx40 does not communicate with Cx43. Thus, connexins differ in their ability to form functional heterotypic gap junctions among mammalian cells.  相似文献   

9.
In contrast to most multimeric transmembrane complexes that oligomerize in the endoplasmic reticulum (ER), the gap junction protein connexin43 (Cx43) oligomerizes in an aspect of the Golgi apparatus. The mechanisms that prevent oligomerization of Cx43 and related connexins in the ER are not well understood. Also, some studies suggest that connexins can oligomerize in the ER. We used connexin constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) transfected into HeLa cells to study early events in connexin oligomerization. Using this approach, Cx43-HKKSL was retained in the ER and prevented from oligomerization. However, another ER-retained HKKSL-tagged connexin, Cx32-HKKSL, had the capacity to oligomerize. Because this suggested that Cx43 contains a motif that prevented oligomerization in the ER, a series of HKKSL-tagged and untagged Cx32/Cx43 chimeras was screened to define this motif. The minimal motif, which prevented ER oligomerization, consisted of the complete third transmembrane domain and the second extracellular loop from Cx43 on a Cx32 backbone. We propose that charged residues present in Cx43 and related connexins help prevent ER oligomerization by stabilizing the third transmembrane domain in the membrane bilayer.  相似文献   

10.
We examined the expression and function of gap junctions in two rat osteoblastic cell lines, ROS 17/2.8 and UMR 106-01. The pattern of expression of gap junction proteins in these two cell lines was distinct: ROS cells expressed only connexin43 on their cell surface, while UMR expressed predominantly connexin45. Immunoprecipitation and RNA blot analysis confirmed the relative quantitation of these connexins. Microinjected ROS cells passed Lucifer yellow to many neighboring cells, but UMR cells were poorly coupled by this criterion. Nevertheless, both UMR and ROS cells were electrically coupled, as characterized by the double whole cell patch-clamp technique. These studies suggested that Cx43 in ROS cells mediated cell-cell coupling for both small ions and larger molecules, but Cx45 in UMR cells allowed passage only of small ions. To demonstrate that the expression of different connexins alone accounted for the lack of dye coupling in UMR cells, we assessed dye coupling in UMR cells transfected with either Cx43 or Cx45. The UMR/Cx43 transfectants were highly dye coupled compared with the untransfected UMR cells, but the UMR/Cx45 transfectants demonstrated no increase in dye transfer. These data demonstrate that different gap junction proteins create channels with different molecular permeabilities; they suggest that different connexins permit different types of signalling between cells.  相似文献   

11.
Many tissues express multiple gap junction proteins, or connexins (Cx); for example, Cx43, Cx40, and Cx37 are coexpressed in vascular cells. This study was undertaken to elucidate the consequences of coexpression of Cx40 or Cx37 with Cx43 at different ratios. EcR-293 cells (which endogenously produce Cx43) were transfected with ecdysone-inducible plasmids encoding Cx37 or Cx40. Immmunoblotting showed a ponasterone dose-dependent induction of Cx37 or Cx40 while constant levels of Cx43 were maintained. The coexpressed connexins colocalized at appositional membranes. Double whole-cell patch clamp recordings showed no significant change in total junctional conductances in cells treated with 0, 0.5, or 4?μM ponasterone; however, they did show a diversity of unitary channel sizes consistent with the induced connexin expression. In cells with induced expression of either Cx40 or Cx37, intercellular transfer of microinjected Lucifer yellow was reduced, but transfer of NBD-TMA (2-(4-nitro-2,1,3-benzoxadiol-7-yl)[aminoethyl]trimethylammonium) was not affected. In cocultures containing uninduced EcR cells together with cells induced to coexpress Cx37 or Cx40, Lucifer yellow transfer was observed only between the cells expressing Cx43 alone. These data show that induced expression of either Cx37 or Cx40 in Cx43-expressing cells can selectively alter the intercellular exchange of some molecules without affecting the transfer of others.  相似文献   

12.
To define further the mechanisms of gap junction protein (connexin (Cx)) oligomerization without pharmacologic disruption, we have examined the transport and assembly of connexin constructs containing C-terminal di-lysine-based endoplasmic reticulum (ER) (HKKSL) or ER-Golgi intermediate compartment (AKKFF) targeting sequences. By immunofluorescence microscopy, Cx43-HKKSL transiently transfected into HeLa cells showed a predominantly ER localization, although Cx43-AKKFF was localized to the perinuclear region of the cell. Sucrose gradient analysis of Triton X-100-solubilized connexins showed that either Cx43-HKKSL or Cx43-AKKFF expressed alone by HeLa cells was maintained as an apparent monomer. In contrast to Cx43-HKKSL, Cx32-HKKSL was maintained in the ER as stable hexamers, consistent with the notion that Cx32 and Cx43 oligomerization occur in distinct intracellular compartments. Furthermore, Cx43-HKKSL and Cx43-AKKFF inhibited trafficking of Cx43 and Cx46 to the plasma membrane. The inhibitory effect was because of the formation of mixed oligomers between Cx43-HKKSL or Cx43-AKKF and wild type Cx43 or Cx46. Taken together, these results suggest that Cx43-HKKSL and Cx43-AKKFF recirculate through compartments where oligomerization occurs and may be maintained as apparent monomers by a putative Cx43-specific quality control mechanism.  相似文献   

13.
Cx43 is widely expressed in many different cell types, and many of these cells also express other connexins. If these connexins are capable of mixing, the functional properties of channels containing heteromeric connexons may substantially influence intercellular communication between such cells. We used biochemical strategies (sedimentation through sucrose gradients, co-immunoprecipitation, or co-purification by Ni-NTA chromatography) to examine heteromeric mixing of Cx43 with other connexins (including Cx26, Cx37, Cx40, Cx45, and Cx56) in transfected cells. These analyses showed that all of the tested connexins except Cx26 formed heteromeric connexons with Cx43. We used the double whole-cell patch-camp technique to analyze the electrophysiological properties of gap junction channels in pairs of co-expressing cells. Cx37 and Cx45 made a large variety of functional heteromeric combinations with Cx43 based on detection of many different single channel conductances. Most of the channel event sizes observed in cells co-expressing Cx40 and Cx43 were similar to those of homomeric Cx43 or Cx40 hemichannels in homo- or hetero-typic configurations. Our data suggest several different possible consequences of connexin co-expression: (1) some combinations of connexins may form heteromeric connexons with novel proeprties; (2) some connexins may form heteromeric channels that do not have unique properties, and (3) some connexins may be incompatible for heteromeric mixing.  相似文献   

14.
Gene ablation studies in mice have revealed roles for gap junction proteins (connexins) in heart development. Of the 20 connexins in vertebrates, four are expressed in developing heart: connexin37 (Cx37), connexin40 (Cx40), connexin43 (Cx43), and connexin45 (Cx45). Although each cardiac connexin has a different pattern of expression, some heart cells coexpress multiple connexins during cardiac morphogenesis. Since different connexins could have overlapping functions, some developmental phenotypes may only become evident when more than one connexin is ablated. In this study, we interbred Cx40(-/-) and Cx43(-/-) mice to generate mice lacking both Cx40 and Cx43. Cx40(-/-)Cx43(-/-) mice die around embryonic day 12.5 (E12.5), much earlier than either Cx40(-/-) or Cx43(-/-) mice, and they exhibit malformed hearts with ventricles that are abnormally rotated, suggesting a looping defect. Some Cx40(-/-)Cx43(-/-) animals also develop head defects characteristic of exencephaly. In addition, we examined mice lacking both Cx40 and Cx37 and found a high incidence of atrial and ventricular septal defects at birth. These results provide further evidence for the importance of gap junctions in embryonic development. Moreover, ablating different pairs of cardiac connexins results in distinct heart defects, suggesting both common and unique functions for Cx40, Cx43, and Cx37 during cardiac morphogenesis.  相似文献   

15.
Cx43 is widely expressed in many different cell types, and many of these cells also express other connexins. If these connexins are capable of mixing, the functional properties of channels containing heteromeric connexons may substantially influence intercellular communication between such cells. We used biochemical strategies (sedimentation through sucrose gradients, co-immunoprecipitation, or co-purification by Ni-NTA chromatography) to examine heteromeric mixing of Cx43 with other connexins (including Cx26, Cx37, Cx40, Cx45, and Cx56) in transfected cells. These analyses showed that all of the tested connexins except Cx26 formed heteromeric connexons with Cx43. We used the double whole-cell patch-camp technique to analyze the electrophysiological properties of gap junction channels in pairs of co-expressing cells. Cx37 and Cx45 made a large variety of functional heteromeric combinations with Cx43 based on detection of many different single channel conductances. Most of the channel event sizes observed in cells co-expressing Cx40 and Cx43 were similar to those of homomeric Cx43 or Cx40 hemichannels in homo- or hetero-typic configurations. Our data suggest several different possible consequences of connexin co-expression: (1) some combinations of connexins may form heteromeric connexons with novel proeprties; (2) some connexins may form heteromeric channels that do not have unique properties, and (3) some connexins may be incompatible for heteromeric mixing.  相似文献   

16.
Cx43 is widely expressed in many different cell types, and many of these cells also express other connexins. If these connexins are capable of mixing, the functional properties of channels containing heteromeric connexons may substantially influence intercellular communication between such cells. We used biochemical strategies (sedimentation through sucrose gradients, co-immunoprecipitation, or co-purification by Ni-NTA chromatography) to examine heteromeric mixing of Cx43 with other connexins (including Cx26, Cx37, Cx40, Cx45, and Cx56) in transfected cells. These analyses showed that all of the tested connexins except Cx26 formed heteromeric connexons with Cx43. We used the double whole-cell patch-camp technique to analyze the electrophysiological properties of gap junction channels in pairs of co-expressing cells. Cx37 and Cx45 made a large variety of functional heteromeric combinations with Cx43 based on detection of many different single channel conductances. Most of the channel event sizes observed in cells co-expressing Cx40 and Cx43 were similar to those of homomeric Cx43 or Cx40 hemichannels in homo- or hetero-typic configurations. Our data suggest several different possible consequences of connexin co-expression: (1) some combinations of connexins may form heteromeric connexons with novel proeprties; (2) some connexins may form heteromeric channels that do not have unique properties, and (3) some connexins may be incompatible for heteromeric mixing.  相似文献   

17.
Vascular conducted responses are believed to play a central role in controlling the microcirculatory blood flow. The responses most likely spread through gap junctions in the vascular wall. At present, four different connexins (Cx) have been detected in the renal vasculature, but their role in transmission of conducted vasoconstrictor signals in the preglomerular arterioles is unknown. Connexin mimetic peptides were previously reported to target and inhibit specific connexins. We, therefore, investigated whether conducted vasoconstriction in isolated renal arterioles could be blocked by the use of mimetic peptides directed against one or more connexins. Preglomerular resistance vessels were microdissected from kidneys of Sprague-Dawley rats and loaded with fura 2. The vessels were stimulated locally by applying electrical current through a micropipette, and the conducted calcium response was measured 500 mum from the site of stimulation. Application of connexin mimetic peptides directed against Cx40, 37/43, 45, or a cocktail with equimolar amounts of each, did not inhibit the propagated response, whereas the nonselective gap junction uncoupler carbenoxolone completely abolished the propagated response. However, the connexin mimetic peptides were able to reduce dye coupling between rat aorta endothelial cells shown to express primarily Cx40. In conclusion, we did not observe any attenuating effects on conducted calcium responses in isolated rat interlobular arteries when exposed to connexin mimetic peptides directed against Cx40, 37/43, or 45. Further studies are needed to determine whether conducted vasoconstriction is mediated via previously undescribed pathways.  相似文献   

18.
Ovarian granulosa cells arecoupled via gap junctions containing connexin43 (Cx43 or -1connexin). In the absence of Cx43, granulosa cells stop growing in anearly preantral stage. However, the fact that granulosa cells of maturefollicles express multiple connexins complicated interpretation of thisfinding. The present experiments were designed to clarify the role ofCx43 vs. these other connexins in the earliest stages offolliculogenesis. Dye injection experiments revealed that granulosacells from Cx43 knockout follicles are not coupled, and this wasconfirmed by ionic current injections. Furthermore, electron microscopyrevealed that gap junctions are extremely rare in mutant granulosacells. In contrast, mutant granulosa cells were able to form gapjunctions with wild-type granulosa cells in a dye preloading assay. Itwas concluded that mutant granulosa cells contain a population of connexons, composed of an unidentified connexin, that do not normally contribute to gap junctions. Therefore, although Cx43 is not the onlygap junction protein present in granulosa cells of early preantralfollicles, it is the only one that makes a significant contribution tointercellular coupling.

  相似文献   

19.
An indirect immunogold labeling technique was applied to replicas of freeze-fractured membranes of rapidly frozen unfixed cells. The endogenous gap junction protein Cx43 of BICR/M1Rkrat mammary tumor cells was preferentially identified in quasi-crystalline gap junction plaques as were the transfected connexins Cx40, Cx43, and Cx45 in HeLa (human cervical carcinoma) cells. With this method we also detected contact areas with dispersed gap junction channels which are the only structural correlation for endogenous Cx45 in HeLa wild-type cells where no gap junction plaques exist. In double-transfected HeLa cells a colocalization of Cx40 and Cx43 was occasionally detected in quasi-crystalline gap junction plaques, whereas in contact areas with dispersed particles only one Cx type was present. Our results indicate that functional gap junction channels exist outside the quasi-crystalline plaques.  相似文献   

20.
Summary Gap junctions contain intercellular channels which are formed by members of a group of related proteins called connexins. Connexins contain conserved transmembrane and extracellular domains, but unique cytoplasmic regions which may provide connexin-specific physiologic properties. We used polymerase chain reaction (PCR) amplification and cDNA library screening to clone DNA encoding a novel member of this gene family, rat connexin40 (Cx40). The derived rat Cx40 polypeptide contains 356 amino acids, with a predicted molecular mass of 40,233 Da. Sequence comparisons suggest that Cx40 is the mammalian homologue of chick connexin42, but it has predicted cytoplasmic regions that differ from previously described mammalian connexins. Southern blots of rat genomic DNA suggest that Cx40 is encoded by a single copy gene containing no introns within its coding region. Northern blots demonstrate that Cx40 is expressed in multiple tissues (including lung, heart, uterus, ovary, and blood vessels) and in primary cultures and established lines of vascular smooth muscle cells. Cx40 is coexpressed with connexin43 in several cell types, including A7r5 cells, which contain two physiologically distinct gap junctional channels. To demonstrate that Cx40 could form functional channels, we stably transfected communication-deficient Neuro2A cells with Cx40 DNA. These Cx40-transfected cells showed intercellular passage of microinjected Lucifer yellow CH. The expression of multiple connexins (such as Cx40 and Cx43) by a single cell may provide a mechanism by which cells regulate intercellular coupling through the formation of multiple channels  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号