首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutrient acquisition in the mature root zone is under systemic control by the shoot and the root tip. In maize, exposure of the shoot to light induces short-term (within 1–2 min) effects on net K+ and H+ transport at the root surface. H+ efflux decreased (from −18 to −12 nmol m−2 s−1) and K+ uptake (∼2 nmol m−2 s−1) reverted to efflux (∼−3 nmol m−2 s−1). Xylem probing revealed that the trans-root (electrical) potential drop between xylem vessels and an external electrode responded within seconds to a stepwise increase in light intensity; xylem pressure started to decrease after a ∼3 min delay, favouring electrical as opposed to hydraulic signalling. Cutting of maize and barley roots at the base reduced H+ efflux and stopped K+ influx in low-salt medium; xylem pressure rapidly increased to atmospheric levels. With 100 m m NaCl added to the bath, the pressure jump upon cutting was more dramatic, but fluxes remained unaffected, providing further evidence against hydraulic regulation of ion uptake. Following excision of the apical part of barley roots, influx changed to large efflux (−50 nmol m−2 s−1). Kinetin (2–4  µ m ), a synthetic cytokinin, reversed this effect. Regulation of ion transport by root-tip-synthesized cytokinins is discussed.  相似文献   

2.
Photosynthetic response of Eragrostis tef to temperature   总被引:1,自引:0,他引:1  
Photosynthetic characteristics of leaves of tef, Eragrostis tef (Zucc.) Trotter, plants, grown at 25/15°C (day/night), were measured at temperatures from 18 to 48°C. The highest carbon exchange rates (CER) occurred between 36 and 42°C. and averaged 27 μmol m−2 s−1. At lower or higher temperatures, CER was reduced, but the availability of CO2 to the mesophyll, measured as internal CO2 concentration, was highest when temperatures were above or below the optimum for CER. In addition, CER and stomatal conductance were not correlated, but residual conductance was highly correlated with CER (r = 0.98). In additional experiments, relative 13C composition for leaf tissue grown at 25, 35 and 45°C averaged -14.4 per mille, confirming that tef is a C4 grass species. Dry matter accumulation was higher at 35 than at 25, and lowest at 45°C. Leaf CER rates increased hyperbolically with increased light when measured from 0 to 2000 μmol m−2 s−1 PPFD. The highest CER, 31.8 μ-mol m-2 s−1, occurred at 35°C and 2000 μmol m−2 s−1 PPFR. At high light, CER at 25 and 35°C were nearly equal because of higher stomatal conductance at 25°C. Residual conductance was, however, clearly highest at 35°C compared to 25 and 45°C treatments. Stomatal conductance and residual conductance were not correlated in either set of experiments, yet residual conductance was always highest when temperatures were between 35 and 42°C across experiments, suggesting that internal leaf photosynthetic potential was highest across that temperature range.  相似文献   

3.
Light effects on in vitro adventitious root formation in axillary shoots of a 95-year-old black cherry ( Prunus serotina Ehrh.) were examined using microcuttings derived from cultured vegetative buds. Three studies were performed: 1) complete darkness and 4 levels of continuous white light irradiance were tested at 70, 278, 555 and 833 μmol m−2 s−1; 2) white, red, yellow and blue light were tested to assess the importance of spectral quality; and 3) the effect of blue light at intensities of 7,15, 22 and 30 μmol m−2 s−1 was also studied, Measurements included rooting percentage, total number of roots per shoot, and shoot and root dry weight. There was a strong negative effect of white light intensity upon root formation. Blue light between 15 and 22 μmol m−2: s−1 significantly retarded root formation and completely inhibited it at 36 μmol m−2 s−1. Shoots treated with yellow light exhibited the highest rooting percentage, mean number of roots per shoot, and root dry weight.  相似文献   

4.
We studied photosynthetic and stomatal responses of grain sorghum ( Sorghum bicolor [L.] Moench cv. Pioneer 8500), soybean ( Glycine max L. cv. Flyer) and eastern gamagrass ( Tripsacum dactyloides L.) during experimental sun and shade periods simulating summer cloud cover. Leaf gas exchange measurements of field plants showed that short-term (5 min) shading of leaves to 300–400 μmol m−2 s−1 photosynthetic photon flux density reduced photosynthesis, leaf temperature, stomatal conductance, transpiration and water use efficiency and increased intercellular CO2 partial pressure. In all species, photosynthetic recovery was delayed when leaves were reilluminated, apparently by stomatal closure. The strongest stomatal response was in soybean. Photosynthetic recovery was studied further with soybeans grown indoors (maximum photosynthetic photon flux density 1 200 μmol m−2 s−1). Plants grown indoors had responses to shade similar to those of field plants, except for brief nonstomatal limitation immediately after reillumination. These responses indicated the importance of the light environment during leaf development on assimilation responses to variable light, and suggested different limitations on carbon assimilation in different parts of the soybean canopy. Photosynthetic oxygen evolution recovered immediately upon reillumination, indicating that the light reactions did not limit soybean photosynthetic recovery. While shade periods caused stomatal closure and reduced carbon gain and water loss in all species, the consequences for carbon gain/water loss were greatest in soybean. The occurrence of stomatal closure in all three species may arise from their shared phenologies and herbaceous growth forms.  相似文献   

5.
The effects of UV-C (254 nm), UV-A (365 nm) and broad-band UV (280–380 nm) on guard cells of Vicia faba L. cv. Long Pod were investigated in the presence of white light (450 μmol m−2 s−1). UV-C (7 μmol m−2 s−1) was found to cause leakage of 86Rb+ from guard cells, while UV-A (0.3 μmol m−2 s−1) stimulated increased uptake in these cells. A relatively small stimulatory effect was observed by broad-band UV (3 μmol m−2 s−1) during the first 30 min of irradiation with an apparent equilibration of influx and efflux thereafter. Leakage of 86Rb+ from guard cells continued despite the removal of UV-C and an increase in the amount of white light from 450 to 1500 μmol m−2 s−1, suggesting that membranes were irreversibly damaged. Irradiation of guard cells with UV-C for 30, 45 and 90 min indicated that these cells began to be affected already by 30 min UV-C irradiation.  相似文献   

6.
Abstract. Measurements of the water-relation parameters of the giant subepidermal cells (volume, V = 0.119 to 1.658 mm3; = 0.53±0.35 mm3, SD, n = 23) and the smaller mesocarp parenchyma cells ( V = 0.10 to 0.79×10−3 mm3; = 0.36±0.27×10−3 mm3, SD, n = 6) of the inner pericarp surface of Capsicum annuum L. were made using the Jülich pressure probe. The volumetric elastic modulus ɛ for the large cells was between 1.5 and 27 MPa for a pressure range of 0.09 to 0.41 MPa. For the small cells ɛ was 0.1 to 0.6 MPa for a pressure range of 0.22 to 0.39 MPa. The turgor pressure P , the half-time of water exchange T 1/2, and the hydraulic conductivity L p were as follows, with SD and number of replicates: large cells, P = 0.27±0.06 MPa (23), T 1/2=2.7±2.2 s (46), L p=5.8±3.7 pm s−1 Pa (46); small cells, P = 0.33±0.07 MPa (6), T 1/2= 33±10s (12), L p=0.21±0.07 pm s−1 Pa−1 (12). The determination of these basic water-relation parameters is considered as a prerequisite for future ecotoxicological and phytopathological studies. The differences between the large and the small cells are discussed in relation to a desirable biophysical definition of succulence. Further, for the large cells a pressure and volume dependence of ɛ was demonstrated.  相似文献   

7.
Responses of apple leaf stomata to environmental factors   总被引:5,自引:4,他引:1  
Abstract. Stomatal conductances ( g s) were measured on the leaves of 3–4 year old Golden Delicious trees and of seedlings of two other cultivars. Measurements were made on container grown trees in the field with a diffusion porometer in 1975 and 1976, and in controlled conditions in a leaf chamber in the laboratory in 1976. Stomatal densities in the Golden Delicious leaves were assessed from scanning electron micrographs. Stomatal density on extension shoot leaves was higher than on other leaf types after June.
The response to irradiance shown by both the porometer and the leaf chamber results could be described by a rectangular hyperbola: where g max is maximum conductance and β indicates the sensitivity of gs to photon influx density ( Q p). The values of β were in the range 60–90 μmol m−2 s−1.
There was no evidence that apple stomata are sensitive to temperature per se, but g s was reduced by increasing leaf to air vapour pressure deficits ( D ). There was a linear relationship between g s and D which was not attributable to feed-back to leaf water potential (ψL) as the latter did not affect g s until a threshold of about −2.0 to −2.5 MPa was reached. Conductance generally declined with increasing ambient CO2 concentration.  相似文献   

8.
Gyrodinium dorsum Kofoid responds photophobically to flashes of blue light. The photophobic response consists of a cessation of movement (stop-response). Without background light and after a flash fluence above 10 J m−2, 75–85% of the cells show a stop-response, while only 50% of the cells show this response at 5 J m−2. With a flash fluence of 5 J m−2, background light of different wavelengths either increases (614 nm. 5.5–18.2 μmol m−2 s−1) or decreases (700 nm, 18.4–36.0 μmol m−2 s−1) the stop-response. Two hypotheses for the mechanism of the modulation by background light of the photophobic response are discussed: an effect of light on the balance of the photosynthetic system (PS I/PS II) or an effect on a phytochrome-like pigment (Pr/Pfr). This study supports the idea that a phytochrome-like pigment works in combination with a blue light-absorbing pigment. It was also found that cells of Gyrodinium dorsum cultured in red light (39.8 μmol m−2) had a higher absorption in the red region of the absorption spectra than those cultured in white light (92.7 μmol m−2).  相似文献   

9.
The circadian rhythm in growth of the red macroalga Porphyra umbilicalis (Linnaeus) J. Agardh was investigated under different spectral light conditions in laboratory-grown thalli. A free-running rhythm was observed in constant green or red light at irradiances of 2.5 to 20 μmol photons·m−2·s−1, whereas arhythmicity occurred in constant blue light at 6–20 μmol photons·m−2·s−1. The circadian oscillator controlling growth rhythmicity in Porphyra uses most of the visible sunlight spectrum and possibly multiple photoreceptors with a high sensitivity for blue light and a lower sensitivity for red light. This was inferred from three experimental results: (1) The free-running period, τ, of the growth rhythm decreased with increasing irradiance, from approximately 25 h at 2.5 μmol photons·m−2·s−1 to 22 h at 20 μmol photons·m−2·s−1 in red or green light, (2) Dark pulses of 3 h duration, interrupting otherwise continuous green or red light, caused advances during the subjective day and delays during the subjective night; the circadian oscillator in Porphyra can discriminate darkness from green or red light, and (3) Low-irradiance blue light pulses (2.5 μmol photons·m−2·s−1) shifted the growth rhythm in red light of higher irradiance (e.g. 10 μmol photons·m−2·s−1), and a strong, high amplitude, type 0 phase response curve was obtained that is usually observed with light pulses shifting a circadian rhythm in otherwise continuous darkness.  相似文献   

10.
Pea plants ( Pisum sativum L. ev. Greenfeast) were grown for 2 to 3 weeks in while (˜ 50 μmol photons m−2 s−1; 400–700 nm) or green (˜ 30 μmol photons m−2 s −1 400–700 nm) light (16 h day/8 h night), with or without far-red light. Supplementary far-red light decreased leaf area and increased internodal length in both white and green light, demonstrating that phytochrome influenced leaf size and plant growth. However, there was no effect of far-red light on chlorophyll a /chlorophyll b ratios, chlorophyll-protein composition, the stoichiometry of electron transport complexes or photosynthetic function of isolated thylakoids. These results suggest that phytochrome is ineffective in modulating the composition and function of thylakoids in pea plants grown at low irradiance. One possible explanation of the ineffectiveness of phytochrome on thylakoids is discussed in terms of the drastic attenuation of red relative to far-red light in green tissue.  相似文献   

11.
Both reduced illumination and increased turbidity caused a significant reduction in reaction distance of Gobiusculus flavescens . The longest reaction distance, 18.9 cm for larger prey (Calanus finmarchicus) , occurred at a light level of 80 μmol m −2 s −1 compared to 12.9 cm for a smaller prey (Acartia clausi) at 8 μmol m−2 s−1. Above a light saturation level of 10 μmol m−2 s−1, additional light had little influence on reaction distance. In the turbidity experiments, the longest reaction distances were measured at turbidity levels of 10–20 JTU. Prey size influenced reaction distance at all tested light levels. Search time was influenced by prey size only at low illumination. With increasing turbidity, reaction distance to a group of prey was longer than to one prey.  相似文献   

12.
The environmental relationships and ecophysiology of Azorella compacta, a giant cushion plant, were investigated in Parque Nacional Lauca, Chile (18°10'–18°25' S and 69°16' W, 4400 m asl). The diurnal temperature range can reach 42 °C on some days of the year. The surface temperature of A. compacta was 13 °C below that of the air temperature of −7 °C at dawn, but from midmorning to late afternoon, the plant surface temperature remained within a few degrees of the air temperature. Soil surface temperatures did not differ between north- and south-facing slopes, but a model showed an increase in radiation reception by north-facing slopes throughout most of the year. Gas exchange measurements of A. compacta measured at the onset of the wet season ranged from −0.6662 to 11.4 μmol·m−2·s−1, and maximum stomatal conductance (Gs) was 410 mmol·m−2·s−1. The estimated light compensation point was 89 μmol·m−2·s−1 and estimated light saturation occurred at about 1280 μmol·m−2·s−1. Diurnal water potential measurements for A. compacta ranged from −1.67 to −2.65 MPa. This is one of the first ecophysiological studies of a tropical alpine cushion plant.  相似文献   

13.
Abstract. The response of stomatal conductance to broadband blue and red light was measured in whole shoots of Scots pine and Sitka spruce, two species which have low stomatal sensitivity to CO2. In Scots pine, blue light was more than three times more effective than red light (on an incident quantum basis) in opening stomata, particularly at low quantum flux densities (<100μmiol m−2 s−1). However, the apparent quantum yield of net CO2 assimilation rate in blue light was only half that in red light. The contrasting effects of red and blue light on conductance and assimilation led to higher intercellular CO2 concentrations (Ci) in blue light (up to 100 μmol mol−1 higher) than in red light. Similar results were obtained with Sitka spruce shoots, though differences in the effectiveness of red and blue light were less marked. In both species, both red and blue light increased conductance in normal and CO2-free air, indicating that neither red nor blue light exert effects through changes in Ci or mesophyll assimilation. However, decreases in Ci caused increases in conductance in both red and blue light, suggesting that these direct effects of light are not wholly independent of CO2.  相似文献   

14.
Shoots from two ecologically different evergreen tree species, Picea abies (L.) Karst and Coffea liberica Hiern, were used to carry out pressure volume (PV) measurements at 5–35°C. For this purpose a pressure chamber was equipped with thermoelectric temperature regulation. The non-linear sections of the resultant PV curves were sigmoidal for both species, with recognizable points of inflexion. These points, at around ψ= 1.12 MPa and relative water content (RWC) = 88.5% for Picea and at ψ= 0.92 MPa and RWC = 95.5% for Coffea , were characterised by a temporary increase in the resistance to water flow of the entire shoot (R5).
The maximum value of the bulk modulus of elasticity (ɛ max) was also in the region of the point of inflexion. This value was considerably higher in Coffea than in Picea . The osmotic pressures at full water saturation (π0) and at turgor loss point (πp) showed a clear temperature dependence between 15 and 35°C differing only slightly from the theoretically expected situation. At 25°C these values were 1.72 and 2.48 MPa. respectively, for Picea and 1.58 and 1.87 MPa. respectively, for Coffea . The turgor loss point occurred at 76–77% RWC in Picea and at 86% RWC in Coffea , the proportion of apoplastic water varied between 22 and 25% in Picea but was only 9–10% in Coffea . The ecological differences between the two species are reflected in their temperature dependence for R5, which was much steeper for Coffea than for Picea . The energy of activation for the water conductance of the whole shoots was 13.0–14.4 kJ mol−1 in Picea and about 23 kJ mol−1 in Coffea .  相似文献   

15.
Rooting ability was studied for cuttings derived from pea plants ( Pisum sativum , L. cv. Alaska) grown in controlled environment rooms. When the cuttings were rooted at 70 μmol m−2 s, 1 (photosynthetic photon flux density) or more, a stock plant irradiance at 100 μmol m−2 s−1 decreased rooting ability in cuttings compared to 5 μmol m−2, s−1, However, cuttings rooted at 160 μmol m−2 s−1 formed more roots compared to 5 (μmol m−2 s−1. Although a high irradiance increased the number of roots formed, it could not overcome a decreased potential for root formation in stock plants grown at high irradiance. Light compensation point and dark respiration of cuttings decreased by 70% during the rooting period, and the final levels were strongly influenced by the irradiance to the cuttings. Respiratory O2 uptake decreased in the apex and the base of the cutting from day 2 onwards, whereas a constant level was found in the leaves. Only the content of extractable fructose, glucose, sucrose and starch varied during the early part of the rooting period. We conclude that the observed changes in the cuttings are initiated by excision of the root system, and are not involved in the initiation of adventitious roots.  相似文献   

16.
Drought and salinity (i.e. soil water stress) are the main environmental factors limiting photosynthesis and respiration and, consequently, plant growth. This review summarizes the current status of knowledge on photosynthesis and respiration under water stress. It is shown that diffusion limitations to photosynthesis under most water stress conditions are predominant, involving decreased mesophyll conductance to CO2, an important but often neglected process. A general failure of photochemistry and biochemistry, by contrast, can occur only when daily maximum stomatal conductance ( g s) drops below 0.05–0.10 mol H2O m−2 s−1. Because these changes are preceded by increased leaf antioxidant activities ( g s below 0.15–0.20 mol H2O m−2 s−1), it is suggested that metabolic responses to severe drought occur indirectly as a consequence of oxidative stress, rather than as a direct response to water shortage. As for respiration, it is remarkable that the electron partitioning towards the alternative respiration pathway sharply increases at the same g s threshold, although total respiration rates are less affected. Despite the considerable improvement in the understanding of plant responses to drought, several gaps of knowledge are highlighted which should become research priorities for the near future. These include how respiration and photosynthesis interact at severe stress, what are the boundaries and mechanisms of photosynthetic acclimation to water stress and what are the factors leading to different rates of recovery after a stress period.  相似文献   

17.
Maize ( Zea mays L. hybrid ZP-704) and black pine ( Pinus nigra Arn.) were grown for five days at low fluence rate (0.4–4.0, μmol m–2 s−1) in blue or red light. Compared to red light of the same fluence rate, blue light effects in maize were repressive for the accumulation of Chita, b , carotenoids and light-harvesting complex-2 (LHC-2) proteins. The maximal reduction of proteins bound to the light-harvesting complex of photosystem 2 and pigments was attained at different fluence rate levels. In black pine, blue light compared to the red of the same fluence rate level either activated or reduced accumulation of pigments and LHC proteins, the effect being dependent on its fluence rate level. At fluence less than 3.0 μmol m−2 s−1 blue light was more efficient for the synthesis of Chi a, b and carotenoids, hut for LHC-2 complexes, fluence rates between 0.4 and 1.5 [μmol m−2 s−1 were more effective. In pine the effects of the two lights on the accumulation of pigments and LHC proteins were demonstrated separately and were dependent on fluence rate level. This suggests irradianoe-controlled activation/deactivation of the photoreceptor at the level of the cell.  相似文献   

18.
Abstract. Gas exchange measurements were made on single leaves of three C3 and one C4 species at air speeds of 0.4 and 4.0 m s−1 to determine if boundary layer conductance substantially affected the substomatal pressure of carbon dioxide. Boundary layer conductances to water vapour were 0.4 to 0.5 mol m−2 s−1 at the lower air speed, and 1.2 to 1.5 mol m−2 s−1 at the higher air speed. Substomatal carbon dioxide pressures were about 5 Pa lower at low boundary layer conductance in the C3 species, and about 3 Pa lower in the C4 species when measurements were made at high and moderate photosynthetic photon flux densities. No evidence of stomatal adjustment to altered boundary layer conductance was found. Photosynthetic rates at high photon flux densities were reduced by about 20% at the low air speed in the C3 species. The commonly reported values of substomatal carbon dioxide pressure for C3 and C4 species were found to occur only when measurements were made at the higher air speed.  相似文献   

19.
Populus euramericana (Dode) Guinier cv. Robusta plants were cultivated at irradiances of 7.5, 15 and 30 W m−2 (32.5, 65 and 130 μmol m2 s−1), 400–700 nm at 22°C and a relative humidity between 40 and 60% on a gravel culture subirrigated with Hoagland's nutrient solution. The basal diameter of the growing shoot, a measure of the number of apical cells participating in growth, increased proportionally to irradiance and was correlated with mature leaf length. The development of the length of the growing shoot (Lgs) depended also on the nutritional status of the (young) shoot. Lgs was strongly correlated with the rate of height growth.  相似文献   

20.
Given the influence of photoperiod on reproductive development and whole-plant senescence in monocarpic plants, one would suspect that leaf senescence in these plants might be under photoperiodic control. In Arabidopsis thaliana , which is monocarpic and also a nonobligate long-day (LD) plant, LDs (16 h, 300 μmol m−2 s−1) caused leaves to die earlier than did short days (SDs, 10 h). Since leaf longevity was not paralleled by the reproductive development in the present study, the reproductive structures did not seem to be the primary controls of leaf senescence. The LD effect appeared to depend on the amount of light rather than on day length, for leaves given LDs at reduced light intensity (180 μmol m−2 s−1) lived longer than those in LDs with full light. In addition, the higher light intensity promoted chlorophyll loss and anthocyanin accumulation in LDs. Thus, senescence of these leaves seems to be governed by light dosage rather than photoperiod. Light may play a natural role in promoting the senescence of A. thaliana leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号