首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The soluble Tim9p-Tim10p (Tim, translocase of inner membrane) complex of the mitochondrial intermembrane space mediates the import of the carrier proteins and is a component of the TIM22 import system. The mechanism by which the Tim9p-Tim10p complex assembles and binds the carriers is not well understood, but previous studies have proposed that the conserved cysteine residues in the 'twin CX3C' motif coordinate zinc and potentially generate a zinc-finger-like structure that binds to the matrix loops of the carrier proteins. Here we have purified the native and recombinant Tim9p-Tim10p complex, and show that both complexes resemble each other and consist of three Tim9p and three Tim10p. Results from inductively coupled plasma--mass spectrometry studies failed to detect zinc in the Tim9p-Tim10p complex. Instead, the cysteine residues seemingly formed disulfide linkages. The Tim9p-Tim10p complex bound specifically to the transmembrane domains of the ADP/ATP carrier, but had no affinity for Tim23p, an inner membrane protein that is inserted via the TIM22 complex. The chaperone-like Tim9p-Tim10p complex thus may prevent aggregation of the unfolded carrier proteins in the aqueous intermembrane space.  相似文献   

2.
The TIM10 chaperone facilitates the insertion of hydrophobic proteins at the mitochondrial inner membrane. Here we report the novel molecular mechanism of TIM10 assembly. This process crucially depends on oxidative folding in mitochondria and involves: (i) import of the subunits in a Cys-reduced and unfolded state; (ii) folding to an assembly-competent structure maintained by intramolecular disulfide bonding of their four conserved cysteines; and (iii) assembly of the oxidized zinc-devoid subunits to the functional complex. We show that intramolecular disulfide bonding occurs in vivo, whereas intermolecular disulfides observed in vitro are abortive intermediates in the assembly pathway. This novel mechanism of compartment-specific redox-regulated assembly is crucial for the formation of a functional TIM10 chaperone.  相似文献   

3.
The small Tim proteins and the twin Cx3C motif   总被引:6,自引:0,他引:6  
The mitochondrial intermembrane space contains the 'small' Tim (translocase of inner membrane) proteins that are marked by their conserved 'twin Cx(3)C' motif separated by 11-16 residues. Together with the Tim22 complex at the inner membrane, the small Tim proteins form the TIM22 import machinery that mediates the biogenesis of polytopic inner membrane proteins. Upon first investigation, the conserved motif resembles a zinc-finger-like domain, but the spacing between the cysteine residues differs from that a canonical zinc finger. Recent publications present different views about the function of the conserved cysteines: the cysteines form a zinc-finger-like structure to coordinate zinc or, alternatively, they form juxtapositioned disulfide bonds.  相似文献   

4.
Tim23p is imported via the TIM (translocase of inner membrane)22 pathway for mitochondrial inner membrane proteins. In contrast to precursors with an NH2-terminal targeting presequence that are imported in a linear NH2-terminal manner, we show that Tim23p crosses the outer membrane as a loop before inserting into the inner membrane. The Tim8p-Tim13p complex facilitates translocation across the intermembrane space by binding to the membrane spanning domains as shown by Tim23p peptide scans with the purified Tim8p-Tim13p complex and crosslinking studies with Tim23p fusion constructs. The interaction between Tim23p and the Tim8p-Tim13p complex is not dependent on zinc, and the purified Tim8p-Tim13p complex does not coordinate zinc in the conserved twin CX3C motif. Instead, the cysteine residues seemingly form intramolecular disulfide linkages. Given that proteins of the mitochondrial carrier family also pass through the TOM (translocase of outer membrane) complex as a loop, our study suggests that this translocation mechanism may be conserved. Thus, polytopic inner membrane proteins, which lack an NH2-terminal targeting sequence, pass through the TOM complex as a loop followed by binding of the small Tim proteins to the hydrophobic membrane spanning domains.  相似文献   

5.
Import of proteins into mitochondria occurs by coordinated actions of preprotein translocases in the outer and inner membranes. Tim9 and Tim10 are translocase components of the intermembrane space, related to deafness-dystonia peptide 1 (DDP1). They coassemble into a hexamer, TIM9.10, which captures and chaperones precursors of inner membrane metabolite carriers as they exit the TOM channel in the outer membrane. The crystal structure of TIM9.10 reveals a previously undescribed alpha-propeller topology in which helical "blades" radiate from a narrow central pore lined with polar residues. The propeller blades are reminiscent of "tentacles" in chaperones Skp and prefoldin. In each TIM9.10 subunit, a signature "twin CX3C" motif forms two intramolecular disulfides. There is no obvious binding pocket for precursors, which we suggest employ the chaperone-like tentacles of TIM9.10 as surrogate lipid contacts. The first reported crystal structure of a mitochondrial translocase assembly provides insights into selectivity and regulation of precursor import.  相似文献   

6.
The Saccharomyces cerevisiae TIM10 complex (TIM10c) is an ATP-independent chaperone of the mitochondrial intermembrane space, involved in transport of polytopic membrane proteins. The complex is an alpha(3)beta(3) hexamer of Tim9 and Tim10 subunits. We have generated specific mutations in charged residues in the central core domain of each subunit delineated by the characteristic twin CX(3)C motif, and investigated the effect of these mutations on subunit folding, complex assembly and TIM10 function in vitro and in vivo. Any combination of mutations that included a specific glutamate residue, conserved in all known Tim9 and Tim10 sequences, abolished assembly of the TIM10 complex. In vivo complementation analyses using a MET3-TIM10 strain that is selectively inactivated for the expression of wild-type Tim10 showed that (i) an N-terminal deleted version of Tim10 that was previously shown to be defective in substrate binding is lethal under all conditions, but (ii) the charged residues mutant of Tim10 that is defective in assembly with Tim9 can restore growth in glucose, but not in non-fermentable carbon sources. These data suggest that formation of the hexamer is beneficial but not vital for TIM10 function, whilst the N-terminal substrate-binding region of Tim10 is essential in vivo.  相似文献   

7.
Oxidative folding in the mitochondrial intermembrane space (IMS) is crucial for the import of certain cysteine-rich IMS proteins. The essential proteins Mia40 and Erv1 are key components for this mechanism functioning as a disulphide protein cascade that is functionally linked to the respiratory chain by shuttling electrons onto CytC. The subunits of the chaperone complex Tim9-Tim10 require Mia40 for their biogenesis. Previously, it was shown that the four cysteines of Tim10 are crucial for folding and assembly, that they are connected intramolecularly into an inner and an outer disulphide bridge, and that the inner disulphide has a more prominent role in these processes. Here we show that interaction with Mia40 is a site-specific event: (i) the N-terminal first cysteine of the precursor is crucial for docking onto Mia40 via a mixed disulphide; (ii) release is triggered by disulphide pairing of the C-terminal cysteine onto the N-terminal one; and (iii) formation of the inner disulphide between the second and third cysteines apparently precedes the release reaction and is critical for assembly with Tim9. The Tim10-Mia40 interaction is independent of divalent cations, any other mitochondrial proteins or membranes, and is shown to occur efficiently in organello and in vitro.  相似文献   

8.
Tim9, a new component of the TIM22.54 translocase in mitochondria.   总被引:14,自引:3,他引:11       下载免费PDF全文
We have identified Tim9, a new component of the TIM22.54 import machinery, which mediates transport of proteins into the inner membrane of mitochondria. Tim9, an essential protein of Saccharomyces cerevisiae, shares sequence similarity with Tim10 and Tim12. Tim9 is located in the mitochondrial intermembrane space and is organized into two distinct hetero-oligomeric assemblies with Tim10 and Tim12. One complex contains Tim9 and Tim10. The other complex contains Tim9, Tim10 and Tim12 and is tightly associated with Tim22 in the inner membrane. The TIM9.10 complex is more abundant than the TIM9.10.12 complex and mediates partial translocation of mitochondrial carriers proteins across the outer membrane. The TIM9.10.12 complex assists further translocation into the inner membrane in association with TIM22.54.  相似文献   

9.
Tim9 and Tim10 belong to the small Tim family of mitochondrial ATP-independent chaperones. They are organised in a specific hetero-oligomeric complex (TIM10) that escorts polytopic proteins into the mitochondrial inner membrane. The contributions of the individual subunits to the assembly and function of the TIM10 complex remain poorly understood. Here, we show that substrate recognition and assembly of the complex are mediated by distinct domains of the subunits. These are unrelated to the characteristic "twin CX3C" motif that is present in all small Tims and ensures proper folding of the unassembled subunits. Specifically, we show that substrate recognition is achieved by the Tim10 subunit, whilst Tim9 serves a more structural role. The N-terminal domain of Tim10 is a substrate sensor whilst its C-terminal part is essential for complex formation. By contrast, both N and C-terminal domains of Tim9 are involved in the stability of the complex.  相似文献   

10.
The small Tim proteins in the mitochondrial intermembrane space participate in the TIM22 import pathway for assembly of the inner membrane. Assembly of the small TIM complexes requires the conserved "twin CX3C" motif that forms juxtapositional intramolecular disulfide bonds. Here we identify a new intermembrane space protein, Hot13p, as the first component of a pathway that mediates assembly of the small TIM complexes. The small Tim proteins require Hot13p for assembly into a 70-kDa complex in the intermembrane space. Once assembled the small TIM complexes escort hydrophobic inner membrane proteins en route to the TIM22 complex. The mechanism by which the small Tim proteins bind and release substrate is not understood, and we investigated the affect of oxidant/reductant treatment on the TIM22 import pathway. With in organello import studies, oxidizing agents arrest the ADP/ATP carrier (AAC) bound to the Tim9p-Tim10p complex in the intermembrane space; this productive intermediate can be chased into the inner membrane upon subsequent treatment with reductant. Moreover, AAC import is markedly decreased by oxidant treatment in Deltahot13 mitochondria and improved when Hot13p is overexpressed, suggesting Hot13p may function to remodel the small TIM complexes during import. Together these results suggest that the small TIM complexes have a specialized assembly pathway in the intermembrane space and that the local redox state of the TIM complexes may mediate translocation of inner membrane proteins.  相似文献   

11.
The TIM22 protein import pathway of the yeast mitochondrion contains several components, including a family of five proteins (Tim8p, -9p, -10p, -12p, and -13p [Tim, for translocase of inner membrane]) that are located in the intermembrane space and are 25% identical. Tim9p and Tim10p have dual roles in mediating the import of inner membrane proteins. Like the Tim8p-Tim13p complex, the Tim9p-Tim10p complex functions as a putative chaperone to guide hydrophobic precursors across the intermembrane space. Like membrane-associated Tim12p, they are members of the Tim18p-Tim22p-Tim54p membrane complex that mediates precursor insertion into the membrane. To understand the role of this family in protein import, we have used a genetic approach to manipulate the complement of the small Tim proteins. A strain has been constructed that lacks the 70-kDa soluble Tim8p-Tim13p and Tim9p-Tim10p complexes in the intermembrane space. Instead, a functional version of Tim9p (Tim9(S67C)p), identified as a second-site suppressor of a conditional tim10 mutant, maintains viability. Characterization of this strain revealed that Tim9(S67C)p and Tim10p were tightly associated with the inner membrane, the soluble 70-kDa Tim8p-Tim13p and Tim9p-Tim10p complexes were not detectable, and the rate of protein import into isolated mitochondria proceeded at a slower rate. An arrested translocation intermediate bound to Tim9(S67C)p was located in the intermembrane space, associated with the inner membrane. We suggest that the 70-kDa complexes facilitate import, similar to the outer membrane receptors of the TOM (hetero-oligomeric translocase of the outer membrane) complex, and the essential role of Tim9p and Tim10p may be to mediate protein insertion in the inner membrane with the TIM22 complex.  相似文献   

12.
Tim10p, a protein of the yeast mitochondrial intermembrane space, was shown previously to be essential for the import of multispanning carrier proteins from the cytoplasm into the inner membrane. We now identify Tim9p, another essential component of this import pathway. Most of Tim9p is associated with Tim10p in a soluble 70 kDa complex. Tim9p and Tim10p co-purify in successive chromatographic fractionations and co-immunoprecipitated with each other. Tim9p can be cross-linked to a partly translocated carrier protein. A small fraction of Tim9p is bound to the outer face of the inner membrane in a 300 kDa complex whose other subunits include Tim54p, Tim22p, Tim12p and Tim10p. The sequence of Tim9p is 25% identical to that of Tim10p and Tim12p. A Ser67-->Cys67 mutation in Tim9p suppresses the temperature-sensitive growth defect of tim10-1 and tim12-1 mutants. Tim9p is a new subunit of the TIM machinery that guides hydrophobic inner membrane proteins across the aqueous intermembrane space.  相似文献   

13.
The mitochondrial intermembrane space assembly (MIA) pathway is generally considered to be dedicated to the redox-dependent import and biogenesis of proteins localized to the intermembrane space of mitochondria. The oxidoreductase Mia40 is a central component of the pathway responsible for the transfer of disulfide bonds to intermembrane space precursor proteins, causing their oxidative folding. Here we present the first evidence that the function of Mia40 is not restricted to the transport and oxidative folding of intermembrane space proteins. We identify Tim22, a multispanning membrane protein and core component of the TIM22 translocase of inner membrane, as a protein with cysteine residues undergoing oxidation during Tim22 biogenesis. We show that Mia40 is involved in the biogenesis and complex assembly of Tim22. Tim22 forms a disulfide-bonded intermediate with Mia40 upon import into mitochondria. Of interest, Mia40 binds the Tim22 precursor also via noncovalent interactions. We propose that Mia40 not only is responsible for disulfide bond formation, but also assists the Tim22 protein in its integration into the inner membrane of mitochondria.  相似文献   

14.
Translocase of IM (inner membrane; Tim)9 and Tim10 are essential homologue proteins of the mitochondrial intermembrane space (IMS) and form a stable hexameric Tim9–Tim10 complex there. Redox-switch of the four conserved cysteine residues plays a key role during the biogenesis of these proteins and, in turn, the Tim proteins play a vital chaperone-like role during import of mitochondrial membrane proteins. However, the functional mechanism of the small Tim chaperones is far from solved and it is unclear whether the individual proteins play specific roles or the complex functions as a single unit. In the present study, we examined the requirement and role for the individual disulfide bonds of Tim9 on cell viability, complex formation and stability using yeast genetic, biochemical and biophysical methods. Loss of the Tim9 inner disulfide bond led to a temperature-sensitive phenotype and degradation of both Tim9 and Tim10. The growth phenotype could be suppressed by deletion of the mitochondrial i-AAA (ATPases associated with diverse cellular activities) protease Yme1, and this correlates strongly with stabilization of the Tim10 protein regardless of Tim9 levels. Formation of both disulfide bonds is not essential for Tim9 function, but it can facilitate the formation and improve the stability of the hexameric Tim9–Tim10 complex. Furthermore, our results suggest that the primary function of Tim9 is to protect Tim10 from degradation by Yme1 via assembly into the Tim9–Tim10 complex. We propose that Tim10, rather than the hexameric Tim9–Tim10 complex, is the functional form of these proteins.  相似文献   

15.
Most mitochondrial proteins are synthesized in the cytosol, imported into mitochondria via the TOM40 (translocase of the mitochondrial outer membrane 40) complex, and follow several distinct sorting pathways to reach their destination submitochondrial compartments. Phosphate carrier (PiC) is an inner membrane protein with 6 transmembrane segments (TM1-TM6) and requires, after translocation across the outer membrane, the Tim9-Tim10 complex and the TIM22 complex to be inserted into the inner membrane. Here we analyzed an in vitro import of fusion proteins between various PiC segments and mouse dihydrofolate reductase. The fusion protein without TM1 and TM2 was translocated across the outer membrane but was not inserted into the inner membrane. The fusion proteins without TM1-TM4 were not inserted into the inner membrane but instead translocated across the inner membrane. Functional defects of Tim50 of the TIM23 complex caused either by depletion of the protein or the addition of anti-Tim50 antibodies blocked translocation of the fusion proteins without TM1-TM4 across the inner membrane, suggesting that lack of TM1-TM4 led to switch of its sorting pathway from the TIM22 pathway to the TIM23 pathway. PiC thus appears to have a latent signal for sorting to the TIM23 pathway, which is exposed by reduced interactions with the Tim9-Tim10 complex and maintenance of the import competence.  相似文献   

16.
Import of carrier proteins from the cytoplasm into the mitochondrial inner membrane of yeast is mediated by a distinct system consisting of two soluble 70-kDa protein complexes in the intermembrane space and a 300-kDa complex in the inner membrane, the TIM22 complex. The TIM22 complex contains the peripheral subunits Tim9p, Tim10p, and Tim12p and the integral membrane subunits Tim22p and Tim54p. We identify here an additional subunit, an 18-kDa integral membrane protein termed Tim18p. This protein is made as a 21.9-kDa precursor which is imported into mitochondria and processed to its mature form. When mitochondria are gently solubilized, Tim18p comigrates with the other subunits of the TIM22 complex on nondenaturing gels and is coimmunoprecipitated with Tim54p and Tim12p. Tim18p does not cofractionate with the TIM23 complex upon immunoprecipitation or nondenaturing gel electrophoresis. Deletion of Tim18p decreases the growth rate of yeast cells by a factor of two and is synthetically lethal with temperature-sensitive mutations in Tim9p or Tim10p. It also impairs the import of several precursor proteins into isolated mitochondria, and lowers the apparent mass of the TIM22 complex. We suggest that Tim18p functions in the assembly and stabilization of the TIM22 complex but does not directly participate in protein insertion into the inner membrane.  相似文献   

17.
Earlier work on the protein import system of yeast mitochondria has identified two soluble 70 kDa protein complexes in the intermembrane space. One complex contains the essential proteins Tim9p and Tim10p and mediates transport of cytosolically-made metabolite carrier proteins from the outer to the inner membrane. The other complex contains the non-essential proteins Tim8p and Tim13p as well as loosely associated Tim9p; its function was unclear, but it interacted structurally or functionally with the Tim9p-Tim10p complex. We now show that the two 70 kDa complexes each mediate the import of a different subset of integral inner membrane proteins and that they can transfer these proteins to one of three different membrane insertion sites: the TIM22 complex, the TIM23 complex or an as yet uncharacterized insertion site. Yeast mitochondria thus use multiple pathways for escorting hydrophobic inner membrane proteins across the aqueous intermembrane space.  相似文献   

18.
Mitochondrial protein traffic requires coordinated operation of protein translocator complexes in the mitochondrial membrane. The TIM23 complex translocates and inserts proteins into the mitochondrial inner membrane. Here we analyze the intermembrane space (IMS) domains of Tim23 and Tim50, which are essential subunits of the TIM23 complex, in these functions. We find that interactions of Tim23 and Tim50 in the IMS facilitate transfer of precursor proteins from the TOM40 complex, a general protein translocator in the outer membrane, to the TIM23 complex. Tim23–Tim50 interactions also facilitate a late step of protein translocation across the inner membrane by promoting motor functions of mitochondrial Hsp70 in the matrix. Therefore, the Tim23–Tim50 pair coordinates the actions of the TOM40 and TIM23 complexes together with motor proteins for mitochondrial protein import.  相似文献   

19.
Yen TY  Pal S  de la Maza LM 《Biochemistry》2005,44(16):6250-6256
Members of the genus Chlamydia lack a peptidoglycan layer. As a substitute for peptidoglycan, it has been proposed that several cysteine rich proteins, including the major outer membrane protein (MOMP), form disulfide bonds to provide rigidity to the cell wall. Alignment of the amino acids sequences of the MOMP from various serovars of Chlamydia showed that they have from 7 to 10 cysteine residues and seven of them are highly conserved. Which of these are free cysteine residues and which are involved in disulfide bonds is unknown. The complexity of the outer membrane of Chlamydia precludes at this point the characterization of the structure of the cysteines directly in the bacteria. Therefore, mass spectrometric analysis of a purified and refolded MOMP was used in this study. Characterization of the structure of this preparation of the MOMP is critical because it has been shown, in an animal model, to be a very effective vaccine against respiratory and genital infections. Here, we demonstrated that in this MOMP preparation four cysteines are involved in disulfide bonds, with intramolecular pairs formed between Cys(48) and Cys(55) and between Cys(201) and Cys(203). A stepwise alkylation, reduction, alkylation process using two different alkylating reagents was required to establish the Cys(48)-Cys(55) disulfide pair. The other residues in MOMP, Cys(51), Cys(136), Cys(226), and Cys(351), are free cysteines and could potentially form disulfide-linked complexes with other MOMP or other membrane proteins.  相似文献   

20.
The TIM10 complex is localized in the mitochondrial intermembrane space and mediates insertion of hydrophobic proteins at the inner membrane. We have characterized TIM10 assembly and analyzed the structural properties of its subunits, Tim9 and Tim10. Both proteins are alpha-helical with a protease-resistant central domain, and each self-associates to form mainly dimers and trimers in solution. Tim9 and Tim10 bound to one another with submicromolar affinity in equimolar amounts and assembled in a stable, significantly extended complex that was indistinguishable from the native mitochondrial TIM10 complex. Importantly, the reconstituted TIM10 complex is functional because it bound to the physiological substrate ADP/ATP carrier and displayed chaperone activity in refolding the model substrate firefly luciferase. These data demonstrate that the individual subunits can exist as independent, dynamically self-associating proteins. Assembly into the thermodynamically stable hexameric complex is necessary for the TIM10 chaperone function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号