首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this study, we report the sequence of the mitochondrial (mt) genome of the Basidiomycete fungus Moniliophthora roreri, which is the etiologic agent of frosty pod rot of cacao (Theobroma cacao L.). We also compare it to the mtDNA from the closely-related species Moniliophthora perniciosa, which causes witches' broom disease of cacao. The 94 Kb mtDNA genome of M. roreri has a circular topology and codes for the typical 14 mt genes involved in oxidative phosphorylation. It also codes for both rRNA genes, a ribosomal protein subunit, 13 intronic open reading frames (ORFs), and a full complement of 27 tRNA genes. The conserved genes of M. roreri mtDNA are completely syntenic with homologous genes of the 109 Kb mtDNA of M. perniciosa. As in M. perniciosa, M. roreri mtDNA contains a high number of hypothetical ORFs (28), a remarkable feature that make Moniliophthoras the largest reservoir of hypothetical ORFs among sequenced fungal mtDNA. Additionally, the mt genome of M. roreri has three free invertron-like linear mt plasmids, one of which is very similar to that previously described as integrated into the main M. perniciosa mtDNA molecule. Moniliophthora roreri mtDNA also has a region of suspected plasmid origin containing 15 hypothetical ORFs distributed in both strands. One of these ORFs is similar to an ORF in the mtDNA gene encoding DNA polymerase in Pleurotus ostreatus. The comparison to M. perniciosa showed that the 15 Kb difference in mtDNA sizes is mainly attributed to a lower abundance of repetitive regions in M. roreri (5.8 Kb vs 20.7 Kb). The most notable differences between M. roreri and M. perniciosa mtDNA are attributed to repeats and regions of plasmid origin. These elements might have contributed to the rapid evolution of mtDNA. Since M. roreri is the second species of the genus Moniliophthora whose mtDNA genome has been sequenced, the data presented here contribute valuable information for understanding the evolution of fungal mt genomes among closely-related species.  相似文献   

2.
The basidiomycete fungus Crinipellis perniciosa (Stahel) Singer is the causal agent of Witches' Broom Disease of Cacao (Theobromacacao L.) which is the main factor limiting cacao production in the Americas. Pod losses of up to 90% are experienced in affected areas as evidenced by the 50% drop in production in Bahia province, Brazil following the arrival of the C. perniciosa in the area in 1989. The disease has proven particularly difficult to control and many farmers in affected areas have given up cacao cultivation. In order to evaluate the potential of endophytes as a biological control agent of this phytopathogen, the endophytic fungal community of resistant and susceptible cacao plants as well as affected branches was studied between 2001 and 2002. The fungal community was identified by morphological traits and rDNA sequencing as belonging to the genera Acremonium, Blastomyces, Botryosphaeria, Cladosporium, Colletotrichum, Cordyceps, Diaporthe, Fusarium, Geotrichum, Gibberella, Gliocladium, Lasiodiplodia, Monilochoetes, Nectria, Pestalotiopsis, Phomopsis, Pleurotus, Pseudofusarium, Rhizopycnis, Syncephalastrum, Trichoderma, Verticillium and Xylaria. These fungi were evaluated both in vitro and in vivo by their ability to inhibit C. perniciosa. Among these, some were identified as potential antagonists, but only one fungus (Gliocladium catenulatum) reduced the incidence of Witches' Broom Disease in cacao seedlings to 70%.  相似文献   

3.
We evaluated the genetic and physiological variability of Moniliophthora perniciosa obtained from healthy and diseased branches of cacao (Theobroma cacao) plants. The diversity of the isolates was evaluated by RAPD technique and by studies of virulence and exoenzyme production. The genetic variability of endophytic and pathogenic M. perniciosa was evaluated in association with pathogenicity assays. RAPD analysis showed eight genetic groups, which were not related to plant disease status (healthy versus diseased branches). Isolates from cacao were included in three groups, excluding isolates from other host plants. Pathogenicity and enzyme analysis showed that the virulence of the isolates is not related to exoenzyme production. This is the first evidence that M. perniciosa colonizes healthy parenchymatic tissues, showing that endophytic behavior may occur in this species.  相似文献   

4.
5.
This report describes the cloning, sequence and expression analysis of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Moniliophthora perniciosa, the most important pathogen of cocoa in Brazil. Southern blot analysis revealed the presence of a single copy of the GAPDH gene in the M. perniciosa genome (MpGAPDH). The complete MpGAPDH coding sequence contained 1,461 bp with eight introns that were conserved in the GAPDH genes of other basidiomycete species. The cis-elements in the promoter region of the MpGAPDH gene were similar to those of other basidiomycetes. Likewise, the MpGAPDH gene encoded a putative 339 amino acid protein that shared significant sequence similarity with other GAPDH proteins in fungi, plants, and metazoans. Phylogenetic analyses clustered the MPGAPDH protein with other homobasidiomycete fungi of the family Tricholomataceae. Expression analysis of the MpGAPDH gene by real-time PCR showed that this gene was more expressed (~1.3X) in the saprotrophic stage of this hemibiotrophic plant pathogen than in the biotrophic stage when grown in cacao extracts.  相似文献   

6.
7.
The causal agent of witches' broom disease, Moniliophthora perniciosa is a hemibiotrophic and endemic fungus of the Amazon basin and the most important cocoa disease in Brazil. The purpose of this study was to analyze the genetic diversity of polysporic isolates of M. perniciosa to evaluate the adaptation of the pathogen from different Brazilian regions and its association with different hosts. Polysporic isolates obtained previously in potato dextrose agar cultures of M. perniciosa from different Brazilian states and different hosts (Theobroma cacao, Solanum cernuum, S. paniculatum, S. lycocarpum, Solanum sp, and others) were analyzed by somatic compatibility grouping where the mycelium interactions were distinguished after 4-8 weeks of confrontation between the different isolates of M. perniciosa based on the precipitation line in the transition zone and by protein electrophoresis through SDS-PAGE. The diversity of polysporic isolates of M. perniciosa was grouped according to geographic proximity and respective hosts. The great genetic diversity of M. perniciosa strains from different Brazilian states and hosts favored adaptation in unusual environments and dissemination at long distances generating new biotypes.  相似文献   

8.
9.
DNA isolation from some fungal organisms is difficult because they have cell walls or capsules that are relatively unsusceptible to lysis. Beginning with a yeast Saccharomyces cerevisiae genomic DNA isolation method, we developed a 30-min DNA isolation protocol for filamentous fungi by combining cell wall digestion with cell disruption by glass beads. High-quality DNA was isolated with good yield from the hyphae of Crinipellis perniciosa, which causes witches' broom disease in cacao, from three other filamentous fungi, Lentinus edodes, Agaricus blazei, Trichoderma stromaticum, and from the yeast S. cerevisiae. Genomic DNA was suitable for PCR of specific actin primers of C. perniciosa, allowing it to be differentiated from fungal contaminants, including its natural competitor, T. stromaticum.  相似文献   

10.
BACKGROUND AND AIMS: Witches' broom disease is caused by the hemibiotrophic basidiomycete Moniliophthora perniciosa, and is one of the most important diseases of cacao in the western hemisphere. Because very little is known about the global process of such disease development, expressed sequence tags (ESTs) were used to identify genes expressed during the Theobroma cacao-Moniliophthora perniciosa interaction. METHODS: Two cDNA libraries corresponding to the resistant (RT) and susceptible (SP) cacao-M. perniciosa interactions were constructed from total RNA, using the DB SMART Creator cDNA library kit (Clontech). Clones were randomly selected, sequenced from the 5' end and analysed using bioinformatics tools including in silico analysis of the differential gene expression. KEY RESULTS: A total of 6884 ESTs were generated from the RT and SP cDNA libraries. These ESTs were composed of 2585 singlets and 341 contigs for a total of 2926 non-redundant sequences. The redundancy of the libraries was low and their specificity high when compared with the few other cacao libraries already published. Sequence analysis allowed the assignment of a putative functional category for 54 % of sequences, whereas approx. 22 % of sequences corresponded to unknown function and approx. 24 % of sequences did not show any significant similarity with other proteins present in the database. Despite the similar overall distribution of the sequences in functional categories between the two libraries, qualitative differences were observed. Genes involved during the defence response to pathogen infection or in programmed cell death were identified, such as pathogenesis related-proteins, trypsin inhibitor or oxalate oxidase, and some of them showed an in silico differential expression between the resistant and the susceptible interactions. CONCLUSIONS: As far as is known this is the first EST resource from the cacao-M. perniciosa interaction and it is believed that it will provide a significant contribution to the understanding of the molecular mechanisms of the resistance and susceptibility of cacao to M. perniciosa, to develop strategies to control witches' broom, and as a source of polymorphism for molecular marker development and marker-assisted selection.  相似文献   

11.
Crinipellis perniciosa infects a diversity of hosts causing severe damage to T. cacao production in many Brazilian growing regions. We compared isolates of Crinipellis from different geographic origins and hosts in Brazil by structural analysis using light (LM) and scanning electronic microscopy (SEM), as well as RFLP and sequence data based on the nuclear rDNA ITS region. Statistical analyses of morphometric data of basidia and basidiospores revealed a distinct group of isolates of Crinipellis obtained from Heteropterys acutifolia when compared to representatives from Theobroma cacao, Solanum lycocarpum and Heteropterys nervosa. A similar distinction also was observed based on sequence data of the ITS region such that combined results allowed for the segregation of a new species within the genus Crinipellis.  相似文献   

12.
Moniliophthora perniciosa is the causal agent of the witches' broom disease of cacao. Based on available genomic sequences, we identified 30 new microsatellite loci, which were analysed using 50 isolates from four populations sampled over a wide geographical area in Brazil, including three populations from the Amazon, the fungal putative centre of diversity, plus one from Bahia. Nine loci were polymorphic, with an average of 2.9 alleles per locus. The level of polymorphism observed was low, but these markers may allow the evaluation of pathogen diversity and the establishment of molecular standards for isolate fingerprinting to support cacao breeding.  相似文献   

13.
Trichoderma theobromicola and T. paucisporum spp. nov. are described. Trichoderma theobromicola was isolated as an endophyte from the trunk of a healthy cacao tree (Theobroma cacao, Malvaceae) in Amazonian Peru; it sporulates profusely on common mycological media. Trichoderma paucisporum is represented by two cultures that were obtained in Ecuador from cacao pods partially infected with frosty pod rot, Moniliophthora roreri; it sporulates sporadically and most cultures remain sterile on common media and autoclaved rice. It sporulates more reliably on synthetic low-nutrient agar (SNA) but produces few conidia. Trichoderma theobromicola was reintroduced into cacao seedlings through shoot inoculation and was recovered from stems but not from leaves, indicating that it is an endophytic species. Both produced a volatile/diffusable antibiotic that inhibited development of M. roreri in vitro and on-pod trials. Neither species demonstrated significant direct in vitro mycoparasitic activity against M. roreri.  相似文献   

14.
The C-biotype of Moniliophthora perniciosa is the causal agent of witches’ broom disease of Theobroma cacao L. While this disease is of major economic importance, the pathogenicity mechanisms and plant responses underlying the disease are difficult to study given the cacao tree’s long life cycle and the limited availability of genetic and genomic resources for this system. The S-biotype of M. perniciosa infects solanaceous hosts, particularly pepper (Capsicum annuum) and tomato (Solanum lycopersicum). These species are much more amenable for performing studies of mechanisms underpinning host-pathogen interactions as compared to cacao. A phylogenetic analysis performed in this study demonstrated that S-biotype strains clustered with C-biotype strains, indicating that these biotypes are not genetically distinct. A comparative analysis demonstrated that disease progression in tomato infected with the S- biotype is similar to that described for cacao infected with the C- biotype. The major symptoms observed in both systems are swelling of the infected shoots and activation and proliferation of axillary meristems. Cellular changes observed in infected tissues correspond to an increase in cell size and numbers of xylem vessels and phloem parenchyma along the infected stem. Observations revealed that fungal colonization is biotrophic during the first phase of infection, with appearance of calcium oxalate crystals in close association with hyphal growth. In summary, despite different host specificity, both biotypes of M. perniciosa exhibit similar disease-related characteristics, indicating a degree of conservation of pathogenicity mechanisms between the two biotypes.  相似文献   

15.
16.
17.
Taxonomy : Moniliophthora roreri (Cif.) H.C. Evans et al. 1978 ; Phylum Basidiomycota; Class Agaricomycetes; Order Agaricales; Family Marasmiaceae; Genus Moniliophthora. Biology : Moniliophthora roreri attacks Theobroma and Herrania species causing frosty pod rot. Theobroma cacao (cacao) is the host of major economic concern. Moniliophthora roreri is a hemibiotroph with a long biotrophic phase (45–90 days). Spore masses, of apparent asexual origin, are produced on the pod surface after initiation of the necrotrophic phase. Spores are spread by wind, rain and human activity. Symptoms of the biotrophic phase can include necrotic flecks and, in some cases, pod malformation, but pods otherwise remain asymptomatic. Relationship to Moniliophthora perniciosa : Moniliophthora roreri and Moniliophthora perniciosa, causal agent of witches’ broom disease of cacao, are closely related. Their genomes are similar, including many of the genes they carry which are considered to be important in the disease process. Moniliophthora perniciosa, also a hemibiotroph, has a typical basidiomycete lifestyle and morphology, forming clamp connections and producing mushrooms. Basidiospores infect meristematic tissues including flower cushions, stem tips and pods. Moniliophthora roreri does not form clamp connections or mushrooms and infects pods only. Both pathogens are limited to the Western Hemisphere and are a threat to cacao production around the world. Agronomic importance : Disease losses caused by frosty pod rot can reach 90% and result in field abandonment. Moniliophthora roreri remains in the invasive phase in the Western Hemisphere, not having reached Brazil, some islands within the Caribbean and a few specific regions within otherwise invaded countries. Disease management : The disease can be managed by a combination of cultural (for example, maintenance of tree height and removal of infected pods) and chemical methods. These methods benefit from regional application, but can be cost prohibitive. Breeding for disease resistance offers the greatest potential for frosty pod rot management and new tolerant materials are becoming available.  相似文献   

18.
Oxalic acid (OA) and Nep1-like proteins (NLP) are recognized as elicitors of programmed cell death (PCD) in plants, which is crucial for the pathogenic success of necrotrophic plant pathogens and involves reactive oxygen species (ROS). To determine the importance of oxalate as a source of ROS for OA- and NLP-induced cell death, a full-length cDNA coding for an oxalate decarboxylase (FvOXDC) from the basidiomycete Flammulina velutipes, which converts OA into CO(2) and formate, was overexpressed in tobacco plants. The transgenic plants contained less OA and more formic acid compared with the control plants and showed enhanced resistance to cell death induced by exogenous OA and MpNEP2, an NLP of the hemibiotrophic fungus Moniliophthora perniciosa. This resistance was correlated with the inhibition of ROS formation in the transgenic plants inoculated with OA, MpNEP2, or a combination of both PCD elicitors. Taken together, these results have established a pivotal function for oxalate as a source of ROS required for the PCD-inducing activity of OA and NLP. The results also indicate that FvOXDC represents a potentially novel source of resistance against OA- and NLP-producing pathogens such as M. perniciosa, the causal agent of witches' broom disease of cacao (Theobroma cacao L.).  相似文献   

19.
Fungal endophytes were isolated from healthy stems and pods of Theobroma gileri, an alternative host of the frosty pod rot pathogen of cacao. Non-sporulating isolates were grouped into 46 different morphological species according to their colony morphology. Many of these morphospecies were assumed to be basidiomycetes and, therefore, were of particular interest. Basidiomycetous endophytes have received far less attention than ascomycetes and also have potential as biological control agents of the basidiomycetous pathogens of T. cacao: Moniliophthora roreri (frosty pod rot pathogen) and M. perniciosa (witches' broom disease). The morphospecies were further characterised by molecular analyses. Amplification of the nuLSU was undertaken for phylogenetic placement of these non-sporulating cultures and revealed a total of 31 different taxa of which 15 were basidiomycetes belonging to the class Agaricomycetes, and 16 ascomycetes primarily belonging to the Sordariomycetes.  相似文献   

20.
A phylogenetic study of marine ascomycetes was initiated to test and refine evolutionary hypotheses of marine-terrestrial transitions among ascomycetes. Taxon sampling focused on the Halosphaeriales, the largest order of marine ascomycetes. Approximately 1050 base pairs (bp) of the gene that codes for the nuclear small subunit (SSU) and 600 bp of the gene that codes for the nuclear large subunit (LSU) ribosomal RNAs (rDNA) were sequenced for 15 halosphaerialean taxa and integrated into a data set of homologous sequences from terrestrial ascomycetes. An initial set of phylogenetic analyses of the SSU rDNA from 38 taxa representing 15 major orders of the phylum Ascomycota confirmed a close phylogenetic relationship of the halosphaerialean species with several other orders of perithecial ascomycetes. A second set of analyses, which involved more intensive taxon sampling of perithecial ascomycetes, was performed using the SSU and LSU rDNA data in combined analyses. These second analyses included 15 halosphaerialean taxa, 26 terrestrial perithecial fungi from eight orders, and five outgroup taxa from the Pezizales. In these analyses the Halosphaeriales were polyphyletic and comprised two distinct lineages. One clade of Halosphaeriales comprised 12 taxa from 11 genera and was most closely related to terrestrial fungi of the Microascales. The second clade of halosphaerialean fungi comprised taxa from the genera Lulworthia and Lindra and was an isolated lineage among the perithecial fungi. Both the main clade of Halosphaeriales and the Lulworthia/Lindra clade are supported by the data as being independently derived from terrestrial ancestors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号