首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The effects of electrothermic destruction and electrical stimulation of the locus coeruleus on the brain levels of vanillylmandelic acid (VMA), 3-methoxy-4-hydroxyphenylglycol (MOPEG) and noradrenaline (NA) were studied in the rat. Fourteen days after destruction of the locus coeruleus, the content of NA in the hippocampus and that of MOPEG in the rest of the brain were decreased by more than 70% and 50% respectively.
Stimulation of the locus coeruleus induced a decrease in hippocampal levels of NA of 38%, while MOPEG levels were found to be increased more than 3-fold After intraventricular injection of 1 μg of adrenaline (A), the levels of MOPEG were Substantially increased In none of these experiments was any variation in VMA levels found, These results suggest that in the rat brain endogenous VMA is not a metabolite of either NA or A The formation of MOPEG from A as well as from NA appears to be possible.  相似文献   

2.
The participation of noradrenaline (NE) and serotonine (5-HT) in self-stimulation (SS) of the medial prefrontal cortex (MPC) in the rat has been studied. Three groups of rats with bilateral electrodes implanted into the MPC were used in these experiments. In one of the groups, electrodes were also implanted into the locus coeruleus. In the first group, the rats received systemic injections of the following drugs: clonidine (alpha-agonist), phenoxybenzamine (alpha-antagonist), isoproterenol (beta-agonist) and propranolol (beta-antagonist). In the second group, p-chlorophenylalanine (a 5-HT synthesis inhibitor) was administered intragastrically and SS measured during the following 16 days. In these two groups of rats and previous to every SS session, spontaneous motor activity (SM) was measured as control for non specific effects of the drugs. In a third group of rats, lesions of the locus coeruleus were performed unilaterally and SS measured in both prefrontal cortex during the following 16 days post-lesion. SS contralateral to the lesioned side served as control for non-specific effects of the lesions. After all these treatments, SS of the MPC was not specifically affected. Our results suggest the non participation of NE and 5-HT terminals in the neural substrates underlying SS of the MPC.  相似文献   

3.
1. Limited coagulations of the locus coeruleus and subcoeruleus nuclei have been performed in rats and the sleep-waking cycle was continuously monitored during 9 days. The cortical and diencephalic noradrenaline content was mesured at the termination of the experiment, on the 10th post lesion day. 2. The bilateral destruction of the locus coeruleus is followed by the appearance of a uro-genital syndrome consisting of hema turia, bladder distension and penile erection. The states of sleep are disturbed during the first two days (increase of slow-wave sleep and decrease of paradoxical sleep times) and thereafter return to normal. Additionally, an hyperthermia appears during the third experimental day. The cortical and diencephalic noradrenaline content decrease to 70%. 3. The simultaneous lesion of both locus coeruleus and subcoeruleus nuclei is followed by the appearance of an aphagia adipsia syndrome in addition to the uro-genital syndrome. After these lesions, it is no long possible to find paradoxical sleep episodes in polygraphic recordings while the amount of slow wave sleep is normal. Cortical and diencephalic noradrenaline content decrease more than 50%. 4. In normal rats direct injection of 6 hydroxydopamine directly in both locus coeruleus and nuclei subcoeruleus had no discernable effects either on the behaviour or on the states of sleep. The cortical noradrenaline content decreased 30% below control values. 5. These results are consistent with but do not prove the hypothesis that part of the pontine tegmentum might play an important role in triggering paradoxical sleep episodes. The role of these regions in the regulation of internal temperature, food consumption and bladder motricity is also discussed.  相似文献   

4.
Abstract— Three days following a single injection of reserpine (10 mg/kg, i.p.) the activity and amount of dopamine-β-hydroxylase (DBH) are increased nearly 2-fold in the noradrenergic cell bodies of the nucleus locus coeruleus of rat. To determine if this increased accumulation of DBH is due to an increased rate of enzyme synthesis, [3H]amino acids were infused into the IVth ventricle of reserpine-and saline-injected rats. This method was 35 times more effective than intracisternal infusion and 600 times more effective than intravenous infusion. DBH protein was isolated from the locus coeruleus by immunoprecipitation and SDS-electrophoresis. These steps proved crucial for the complete isolation of DBH from other labelled proteins. Indeed, only 10–15% of the immunoprecipitate was finally identified as labelled DBH protein. The rate of incorporation of [3H]leucine into DBH protein of locus coeruleus was increased to 181%, of control following reserpine, whereas that into TCA-precipitable protein was unchanged. A similar result was obtained using [3H]lysine. In contrast, the apparent half-life of the enzyme did not change following reserpine. The relative rate of synthesis of DBH ([3H]DBH/3H-total protein), denoting selectivity of response, was increased in the locus coeruleus of reserpine-treated rats to 154% of control ( P < 0.01). These findings indicate that increased synthesis accounts for the observed increase in DBH protein in the locus coeruleus following reserpine administration.  相似文献   

5.
大鼠蓝斑核区神经降压素对迷走—加压反应的影响   总被引:1,自引:0,他引:1  
徐珞  陈家津 《生理学报》1991,43(1):84-88
本文应用放射免疫、核团微量注射及组织荧光分光测定等实验方法,研究大鼠蓝斑核区神经降压素对迷走-加压反应的影响。结果表明:1.电刺激颈迷走神经向中端,孤束核、蓝斑核区和下丘脑中神经降压素免疫活性物的含量明显增高(p<0.05)。2.蓝斑核区注入神经降压素后,刺激颈迷走神经向中端,迷走-加压反应明显减弱(P<0.01),并呈明显的量效依赖关系。3.蓝斑核区注入抗神经降压素血清,迷走-加压反应明显加强(p<0.01)。4.蓝斑核区注入神经降压素后,刺激颈迷走神经向中端,该区去甲肾上腺素含量明显增高(p<0.05)。以上结果提示:内源与外源性神经降压素参与迷走-加压反应的调节过程,并可能与神经降压素引起蓝斑核区去甲肾上腺素含量增加有关。  相似文献   

6.
An effect of the treatment with guanfacine on the activity of the adreno-sympathetic system, beta-thromboglobulin, beta-endorphin, and blood lipids was studied in 30 patients with the primary arterial blood hypertension. It was found that guanfacine significantly decreases plasma noradrenaline, adrenaline, and dopamine. Moreover, it decreases the excretion of noradrenaline, adrenaline and 4-hydroxy-3-methoxy-phenylglycol. These effects correlate with the drop in both systolic and diastolic blood pressure. A decrease in plasma renin activity was also observed. It correlated with the blood pressure drops. Guanfacine increased beta-endorphin levels while beta-thromboglobulin, total cholesterol and triglycerides levels remained unaffected. The authors suggest that the hypotensive effect of guanfacine is related to the decrease in adreno-sympathetic system activity and plasma renin activity and no effect on the erythrocyte activity and lipids metabolism.  相似文献   

7.
The locus coeruleus is thought to play an important role in the development of the central nervous system through a coordinated release of noradrenaline. The influence of the locus coeruleus on its diverse targets is strongly synchronized by the existence of electrical and chemical coupling between neurones, afferent supply of the nucleus from restricted sources and diffuse innervation of target areas. Extensive coupling between neonatal locus coeruleus neurones produces rhythmic synchronized electrical activity and distributes afferent synaptic activity throughout the entire nucleus. The strength of electrical coupling declines with age but appears to persist to a limited extent in the adult.  相似文献   

8.
Our previous studies have suggested that dopamine and noradrenaline may be coreleased from noradrenergic nerve terminals in the cerebral cortex. To further clarify this issue, the effect of electrical stimulation of the locus coeruleus on extracellular noradrenaline, dopamine and DOPAC in the medial prefrontal cortex, parietal cortex and caudate nucleus was analysed by microdialysis in freely moving rats. Stimulation of the locus coeruleus for 20 min with evenly spaced pulses at 1 Hz failed to modify cortical catecholamines and DOPAC levels. Stimulation with bursts of pulses at 12 and 24 Hz increased, in a frequency-related manner, not only noradrenaline but also dopamine and DOPAC in the two cortices. In both cortices noradrenaline returned to baseline within 20 min of stimulation, irrespective of the stimulation frequency, whereas dopamine returned to normal within 20 and 60 min in the medial prefrontal cortex and within 60 and 80 min in the parietal cortex after 12 and 24 Hz stimulation, respectively. DOPAC remained elevated throughout the experimental period. Phasic stimulation of the locus coeruleus at 12 Hz increased noradrenaline in the caudate nucleus as in the cerebral cortices but was totally ineffective on dopamine and DOPAC. Tetrodotoxin perfusion into the medial prefrontal cortex dramatically reduced noradrenaline and dopamine levels and suppressed the effect of electrical stimulation. These results indicate that electrical stimulation-induced increase of dopamine is a nerve impulse exocytotic process and suggest that cortical dopamine and noradrenaline may be coreleased from noradrenergic terminals.  相似文献   

9.
本文研究了蓝斑核对迷走-迷走抑胃反射的影响。实验结果表明,单独刺激迷走神经中枢端抑制胃电和胃运动,胃电慢波的振幅和胃内压分别下降到对照值的60.9%和45.7%,与对照值相比有明显的统计学意义(P<0.05)。刺激迷走神经中枢端的同时,以弱刺激刺激蓝斑核时,胃电慢渡的振幅和胃内压分别下降到对照值的42.1%和34.1%,与单独刺激迷走神经的效果相比较有非常显著的差异(P<0.01)。本文结果提示:蓝斑核的兴奋加强迷走-迷走抑胃反射。  相似文献   

10.
众所周知,肉食动物和大白鼠的脚内核,相当于灵长类的内侧苍白球(Nagy et al.1978;Fox and Schmitz 1944);它们的细胞形态、传入及传出均相同。早期以及近年来的一些研究工作者,虽然在研究其他核团的投射时,联系到一些本核团的传入,但是尚缺乏对本核团传人的系统研究。本实验即是应用辣根过氧化物酶的逆行传递法来研究大白鼠脚内核的传入性联系。  相似文献   

11.
1. Various aspects of the noradrenergic system in the brain of the dysmyelinating convulsive mutant mice quaking have been examined. 2. Determination of the endogenous contents of noradrenaline and its metabolite 3-methoxy 4-hydroxyphenyl-ethyleneglycol (MOPEG), as well as measurement of the electrically-evoked release of (3H)-noradrenaline shows an increased noradrenergic activity in the brain of the mutants, when compared to non convulsive controls of the same strain. 3. Ontogenic development of alpha adrenergic receptors indicate that an increased density of alpha-2 sites precedes the appearance of the first convulsions by approximately one week. 4. Anatomical determination of the number of noradrenergic neuronal cell bodies in the locus coeruleus shows a hyperplasia of this nucleus in the mutants. 5. Electrolytic coagulation of the locus coeruleus inhibits the convulsions of the quaking mice. 6. These results suggest that an alteration of the embryonic differentiation of the locus coeruleus, which gives rise to the majority of brain noradrenergic neurons, provokes a hyperactivity of this neuronal system, thereby triggering the convulsions of the quaking mutant mice. 7. The possible involvement of other neurotransmitter systems in the convulsions of these mutants, together with the nature of the relationship between neuronal abnormalities and dysmyelination phenomenon, are discussed.  相似文献   

12.
The medial septal area of conscious rats was stimulated through previously implanted electrodes at a frequency of 7.7 Hz for 20 min each day for 7 days to evoke rhythmic slow activity in CA1 at a similar frequency to spontaneous theta. Two weeks later in the anaesthetized rats the effects of a single subcutaneous injection of nicotine (0.4 mg x kg(-1)) on fEPSPs, evoked in the dentate gyrus by separate stimulation of the MPP and LPP, were studied and compared with those obtained in controls. Nicotine increased the firing of locus coeruleus neurones and the slope of the fEPSPs evoked by LPP stimulation, but not by MPP stimulation. Prior theta driving considerably increased the effect of nicotine on the responses evoked by stimulation of the MPP and abolished the nicotine-induced potentiation of the responses evoked by stimulation of the LPP. The results are attributed to theta driving increasing the amount of noradrenaline released by nicotine and to noradrenaline producing a beta-adrenoceptor long-lasting potentiation at the medial perforant path synapse and a long-lasting depression at the lateral perforant path synapse.  相似文献   

13.
The levels of cyclic AMP in the rat brain were studied in vivo following destruction or stimulation of the noradrenergic pathway originating in the locus coeruleus. After chronic lesion of the locus coeruleus no alterations in cyclic AMP content were found. Electrical stimulation of the locus coeruleus produced an elevation of cyclic AMP in the cerebral cortex of chloral hydrate anaesthetized rats of 30%. Maximal increases were found after 15–60 s stimulation at a frequency of 30–100 Hz. This maximal response was slightly inhibited by phenoxybenzamine, an α-adrenergic blocking agent, and by the β-blocker propranolol. When the α and β blockers were administered together a highly significant decrease in cyclic AMP response was observed. Pretreatment of the rats with reserpinc +α methyl-p-tyrosine prevented the cyclic AMP response. In addition to the effect in the cerebral cortex, cyclic AMP-levels were also enhanced in the hippocampus, in the striatum and in the hypothalamus. These results suggest that the locus coeruleus regulates a small fraction of cerebral cyclic AMP levels, by both α- and β-adrenergic receptors.  相似文献   

14.
Apathy is a debilitating feature of many neuropsychiatric diseases, that is typically described as a reduction of goal-directed behaviour. Despite its prevalence and prognostic importance, the mechanisms underlying apathy remain controversial. Degeneration of the locus coeruleus-noradrenaline system is known to contribute to motivational deficits, including apathy. In healthy people, noradrenaline has been implicated in signalling the uncertainty of expectations about the environment. We proposed that noradrenergic deficits contribute to apathy by modulating the relative weighting of prior beliefs about action outcomes. We tested this hypothesis in the clinical context of Parkinson’s disease, given its associations with apathy and noradrenergic dysfunction. Participants with mild-to-moderate Parkinson’s disease (N = 17) completed a randomised double-blind, placebo-controlled, crossover study with 40 mg of the noradrenaline reuptake inhibitor atomoxetine. Prior weighting was inferred from psychophysical analysis of performance in an effort-based visuomotor task, and was confirmed as negatively correlated with apathy. Locus coeruleus integrity was assessed in vivo using magnetisation transfer imaging at ultra-high field 7T. The effect of atomoxetine depended on locus coeruleus integrity: participants with a more degenerate locus coeruleus showed a greater increase in prior weighting on atomoxetine versus placebo. The results indicate a contribution of the noradrenergic system to apathy and potential benefit from noradrenergic treatment of people with Parkinson’s disease, subject to stratification according to locus coeruleus integrity. More broadly, these results reconcile emerging predictive processing accounts of the role of noradrenaline in goal-directed behaviour with the clinical symptom of apathy and its potential pharmacological treatment.  相似文献   

15.
The effect of a single systemic injection of reserpine on tyrosine hydroxylase activity in the locus coeruleus, cerebellum, hypothalamus, and hippocampus was examined. Increases in enzyme activity were seen in all four brain areas; the time-course of the changes, however, was different in each case. In the locus coeruleus the maximum change in enzyme activity was seen 3 days after drug administration; in the cerebellum, 7-11 days; in the hypothalamus, 8-11 days; and in the hippocampus, 21 days. Since tyrosine hydroxylase in the cerebellum and hippocampus is present in terminals of neurons whose cell bodies are located in the locus coeruleus, the delayed increase in enzyme activity in cerebellum and hippocampus probably depends upon the slow rate of transport of TH molecules in these neurons.  相似文献   

16.
The effects of iontophoretically applied noradrenaline have been tested on intracellularly recorded locus coeruleus neurons grown in explant cultures from neonatal mice. In addition to hyperpolarizing responses mediated by alpha 2-adrenergic receptors, as observed in locus coeruleus neurons in vivo and in brain slices from adult animals, alpha 1-mediated depolarizations were observed to succeed the initial hyperpolarizations in some cultures. It was shown that the depolarizing responses were only present in younger cultures, i.e., less than 26 days in vitro. In cultures less than 20 days old, all cells displayed the biphasic hyperpolarizing-depolarizing responses. Both components of the response appear to be direct, since they were present when synaptic transmission was blocked by including tetrodotoxin or by altering divalent cations in the perfusate. The depolarizing responses were frequently reduced in solutions with altered divalent cation content, and this might reflect a calcium dependency of this response. The hyperpolarizing and depolarizing components of the responses to noradrenaline were progressively blocked by increasing concentrations of the selective antagonists yohimbine and prazosin, respectively, in the dose ranges of 100 mM - 1 microM (yohimbine) and 20-200 nM (prazosin). Recent results from electrophysiological studies of locus coeruleus neurons in brain slices suggest that similar changes occur in the animal as well as in culture. It is possible that the transient depolarizing responses reflect a developmentally important enhanced responsiveness of locus coeruleus neurons during the early postnatal period.  相似文献   

17.
To examine the role of the GABA(A) receptor mediating systems in the control of gonadotropin-releasing hormone (GnRH) release from the ventromedial-infundibular region (VEN/IN) of anestrous ewes, the extracellular concentrations of GnRH, beta-endorphin, noradrenaline (NE), dopamine (DA), 4-hydroxy-3-methoxy-phenylglycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC) were quantified during local stimulation or blockade of GABA(A) receptors with muscimol or bicuculline respectively. In most animals stimulation of GABA(A) receptors significantly attenuates GnRH release with concomitant increase of beta-endorphin and DA release, and MHPG and DOPAC levels. Blockade of the GABA(A) receptors generally did not affect GnRH and NE release but inhibited in most animals beta-endorphin release and decreased dopaminergic activity. These results suggest, that GABA may suppress GnRH release directly by GABA(A) receptor mechanism on the axon terminal of GnRH neurons or indirectly by GABA(A) receptor processes activating beta-endorphin-ergic and dopaminergic neurons in the VEN/NI. On the basis of these results in could not be distinguish between these two events. The decrease in extracellular beta-endorphin and dopamine concentration without evident changes in the GnRH level during GABA(A) receptor blockade may suggest that other neuronal systems are involved in this effect.  相似文献   

18.
Behavioral, i.e. non-cognitive, disturbances, such as anxiety, agitation, sleep disturbances and depression occur in the majority of Alzheimer's disease (AD) patients, but their neurobiological basis is unknown. Disturbance of stress regulating systems, like the locus coeruleus, could play an important role. The locus coeruleus, the main production site of noradrenaline in the central nervous system, is involved in phenomena like attention, arousal and the response to the environment. In Alzheimer's disease, there is a marked reduction of noradrenergic neurons in the locus coeruleus. We studied the activity in the remaining locus coeruleus neurons and found an inverse relationship between the number of remaining neurons and the noradrenergic activity. This could indicate compensatory activity and loss of flexibility of this system. Clinically, the loss of flexibility could result in an impairment to focus attention and to respond to the environment. These results can be related to another stress related system, the hypothalamo-pituitary-adrenal-(HPA)axis. This means that further evaluation of both of these systems is necessary.  相似文献   

19.
1. 5,6-dihydroxytryptamine (5,6-DHT) or a lesion of the raphe centralis superior (RCS) cause significant decreases in the serotonin (5-HT) content and significant increases in the tyrosine hydroxylase activity in the locus coeruleus (LC) of the rat. This suggests that noradrenaline (NA) synthesis is controlled by serotonin-containing neurons in the raphe system via their terminals in the LC. 2. Radioautography after intraventricular infusion of tritiated serotonin (3H-5-HT) and biochemical determinations of endogenous 5-HT content showed an almost complete disappearance of serotoninergic axonal varicosities and content in the LC region 10-15 days after intraventricular administration of 75 micrograms of 5,6-DHT. Two to 4 months after neurotoxin administration, 5-HT fibers had regrown in the LC but, contrary to the normal innervation pattern, the majority of them invaded the medial most portion of the nucleus and the adjacent subependymal region. The LC region regained almost all of its endogenous 5-HT content in the same time period. 3. Functional recuperation of these 5-HT fibers was demonstrated by the fact that the RCS had, after regeneration, the same functional control on NA synthesis as in the normal animal.  相似文献   

20.
Transection (axotomy) of the dorsal tegmental noradrenaline bundle in the neonatal stage leads to a permanent degeneration of noradrenaline nerve terminal projections distal to the lesion (e.g. in the neocortex), while projections proximal to the lesion increase their nerve terminal density (e.g. in the cerebellum). These structural changes are reflected by marked reductions and elevations respectively of the endogenous noradrenaline levels, [3H]-noradrenaline uptake in vitro and nerve density as demonstrated by fluorescence histochemistry. Intracisternal administration of substance P after the transection did not alter these noradrenaline parameters in the neocortex, whereas dose-dependent and significant increases were found in the cerebellum and pons-medulla. The results indicate that substance P may have a growth-stimulatory effect on damaged locus coeruleus noradrenaline neurons in the CNS during ontogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号