首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Elongation of fatty acids by microsomal fractions obtained from leek epidermal cells was measured by the incorporation of [1-14C]stearate, [1-14C]stearyl CoA, and [1-14C]stearyl ACP in the presence of malonyl CoA and NADPH. Stearoyl CoA appears to be the primer of the elongase (s) rather than stearoyl ACP. There are at least two elongases, the first elongating C18 to C20, the second synthesizing C22 to C30 fatty acids from C20. The main site of the elongase (s) is a subcellular fraction enriched in endoplasmic reticulum. The plasma membrane-enriched fraction, which contains large amounts of saturated very long chain fatty acids, synthesizes only minor amounts of them.  相似文献   

4.
5.
J N Kanfer  D McCartney  H Hattori 《FEBS letters》1988,230(1-2):101-104
Subcellular fractions from developing seeds of mustard (Sinapis alba), honesty (Lunaria annua) and nasturtium (Tropaeolum majus) synthesize very long chain cis (n−9) monounsaturated fatty acids, e.g. gadoleic (20:1), erucic (22:1) and nervonic (24:1) acid, from oleoyl-CoA and malonyl-CoA by condensation reactions. The particulate 2000 × g and 15 000 × g fractions exhibit considerably higher elongase activities compared to the microsomal or oil body fractions, whereas the soluble (150 000 × g supernatant) fraction is devoid of such activities.  相似文献   

6.
7.
8.
The activity of chymase was markedly inhibited by fatty acids with carbon chain lengths of 14-22 at doses greater than 0.02 microM, irrespective of the number of double bonds. Cis acids with a carbon chain length of 18, such as stearic acid, oleic acid, linoleic acid, and linolenic acid were potent inhibitors, whereas the trans isomer of oleic acid, elaidic acid, showed less inhibitory activity. The extent of inhibition by oleyl alcohol was almost the same as that by oleic acid, suggesting that the acid moiety itself was not necessary for the inhibition; but a fatty acid with a terminal functional amide, oleamide, showed little inhibitory activity. The inhibition was noncompetitive and was reversible, and the Ki value of oleic acid was 2.7 microM. Stearic acid and oleic acid inhibited all chymotrypsin-type serine endopeptidases tested. The ID50 values of these fatty acids for atypical mast cell protease were higher than those for the other chymotrypsin-type serine endopeptidases tested. Other proteases, such as papain, trypsin, collagenase, and carboxypeptidase A, except cathespin D, were not affected by stearic or oleic acid.  相似文献   

9.
10.
11.
Adult Drosophila melanogaster synthesizes dodecanoic and tetradecanoic acids in vivo, along with the more common 16- and 18-carbon fatty acids. The radiolabeled C12 and C14 fatty acids synthesized from sodium [1-14C]acetate are found primarily in the diacylglycerol and triacylglycerol fractions. Partially purified fatty acid synthetase (FAS) synthesizes C14, C16, and C18 fatty acids (as the free acids) at 0.2 M ionic strength. Increasing the ionic strength to 2.0 M causes partially purified FAS to synthesize primarily C12 and C14 fatty acids. Addition of aliquots of the microsomal pellet and other soluble protein fractions does not alter the pattern of fatty acids synthesized by FAS. The percentage of C12 and C14 fatty acids synthesized at high ionic strength by individual fractions from the FAS peak (Sepharose 6B column) is constant across the peak. None of the soluble protein fractions is able to relieve the inhibition of FAS by phenylmethylsulfonyl fluoride. These results indicate that the FAS of D. melanogaster has the inherent capability to form C12 and C14 fatty acids and that no other soluble protein appears to be involved in their synthesis.  相似文献   

12.
13.
14.
To obtain insight into the relation between the release of heart-type fatty acid-binding protein (H-FABPc) and of long-chain fatty acids (FA) from injured cardiac tissue, rat hearts were Langendorff perfused according to the following scheme: 30 min normoxia, 60 min ischemia, 30 min reperfusion, 10 min Ca2+ free perfusion and finally 10 min Ca2+ repletion. During this protocol right ventricular (Q rv ) and interstitial effluent samples (Q i ) were collected at regular intervals. During reperfusion a total of 0.8±0.1 nmol H-FABPc but no FA were detected in the effluents. However, during Ca2+ readmission, 45±4 nmol H-FABPc (80–90% of total tissue content) was released with an initial (first 3 min) simultaneous release of FA (FA/H-FABPc ratio 0.90±0.07 mol/mol). Thereafter, FA release continued at 10–15 nmol per min mainly inQ rv while the rate of H-FABPc release decreased. During Ca2+ repletion, tissue FA content raised rapidly from 168±20 to 1918±107 nmol/g dry weight. These findings suggest that after severe cardiac damage initially FA is released bound to H-FABPc, whereas further FA release occurs in a non-protein bound manner.  相似文献   

15.
16.
17.
Cellular uptake and intracellular trafficking of long chain fatty acids.   总被引:14,自引:0,他引:14  
While aspects of cellular fatty acid uptake have been studied as early as 50 years ago, recent developments in this rapidly evolving field have yielded new functional insights on the individual mechanistic steps in this process. The extremely low aqueous solubility of long chain fatty acids (LCFA) together with the very high affinity of serum albumin and cytoplasmic fatty acid binding proteins for LCFA have challenged the limits of technology in resolving the individual steps of this process. To date no single mechanism alone accounts for regulation of cellular LCFA uptake. Key regulatory points in cellular uptake of LCFA include: the aqueous solubility of the LCFA; the driving force(s) for LCFA entry into the cell membrane; the relative roles of diffusional and protein mediated LCFA translocation across the plasma membrane; cytoplasmic LCFA binding protein-mediated uptake and/or intracellular diffusion; the activity of LCFA-CoA synthetase; and cytoplasmic protein mediated targeting of LCFA or LCFA-CoAs toward specific metabolic pathways. The emerging picture is that the cell has multiple, overlapping mechanisms that assure adequate uptake and directed intracellular movement of LCFA required for maintenance of physiological functions. The upcoming challenge is to take advantage of new advances in this field to elucidate the differential interactions between these pathways in intact cells and in tissues.  相似文献   

18.
19.
Three strains of Mycoplasma, M. laidlawii A and B, and Mycoplasma sp. A60549, were grown in broth containing sodium acetate-1-C(14). The methyl esters of the phospholipid fatty acids of harvested radioactive cells were prepared and identified by comparison of their mobilities to known radioactive fatty acid methyl esters by use of a modified reversed-phase partition-thin layer chromatographic technique. No radioactive methyl oleate or methyl linoleate was detected. Compounds migrating as radioactive methyl myristate, stearate, palmitate, and, with less certainty, laurate and octanoate were detected. The qualitative findings for all three organisms appeared similar. M. laidlawii B synthesized a radioactive substance, presumably a saturated fatty acid detected as the methyl ester derivative, which migrated in a position intermediate to methyl myristate-1-C(14) and methyl palmitate-1-C(14). This work indicates that M. laidlawii A and B and Mycoplasma sp. A60549 are capable, in a complex medium containing fatty acids, of synthesizing saturated but not unsaturated fatty acids entirely or in part from acetate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号